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Abstract: When designed correctly, radial basis function (RBF) neural networks can approximate
mathematical functions to any arbitrary degree of precision. Multilayer perceptron (MLP) neural
networks are also universal function approximators, but RBF neural networks can often be trained
several orders of magnitude more quickly than an MLP network with an equivalent level of function
approximation capability. The primary challenge with designing a high-quality RBF neural network
is selecting the best values for the network’s “centers”, which can be thought of as geometric locations
within the input space. Traditionally, the locations for the RBF nodes’ centers are chosen either
through random sampling of the training data or by using k-means clustering. The current paper
proposes a new algorithm for selecting the locations of the centers by relying on a structure known as
an “opportunity matrix”. The performance of the proposed algorithm is compared against that of the
random sampling and k-means clustering methods using a large set of experiments involving both
a real-world dataset from the steel industry and a variety of mathematical and statistical functions.
The results indicate that the proposed opportunity matrix algorithm is almost always much better at
selecting locations for an RBF network’s centers than either of the two traditional techniques, yielding
RBF neural networks with superior function approximation capabilities.

Keywords: radial basis functions; opportunity matrix; neural networks; function approximation;
machine learning; artificial intelligence

1. Introduction

Feed-forward, multilayer perceptron (MLP) neural networks have become highly
valued and widely used tools in machine learning (ML) and artificial intelligence (AI) com-
munities. One of the key reasons for this is that, given a sufficiently complex model, MLP
neural networks have been shown to be universal function approximators, per Cybenko’s
theorem [1]. This ability to approximate any function to any arbitrary degree of precision
underlies the success of MLP-based neural networks in a very wide array of tasks, includ-
ing binary, multilabel, and multiclass classification tasks, linear prediction tasks, speech
and image recognition, and machine translation, among many others [2]. Unfortunately,
high-precision function approximation using MLP neural networks often requires a large,
complex model consisting of many nodes and many hidden layers, and this complexity
can result in a lengthy and computationally expensive training process, particularly when
it is necessary to evaluate the performance of many competing models [3,4].

1.1. Overview of RBF Neural Networks

Given the challenges that often arise when training MLP-based neural networks,
AI/ML practitioners seeking a solution for high-precision function approximation may
benefit greatly from considering another type of neural network architecture—that of a
radial basis function (RBF) network [5]. In contrast with conventional MLP networks,
RBF neural networks differ in that they rely on a single hidden layer of nodes in which
nonlinear radial basis functions are used as the nodes’ activation functions. This particular
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type of neural network architecture has shown itself to be of value in a wide variety of
practical applications, including solving partial differential equations [6], real-time facial
recognition [7], computer vision [8], and signal processing [9], among many others.

Although RBF neural networks most commonly rely on Gaussian radial basis func-
tions, other types of radial basis functions may be substituted when appropriate [10]. The
standard Gaussian radial basis function is defined in Equation (1) below [11]. The parameter
r in Equation (1) denotes the distance between an input value and the RBF node’s “center”
(which will be discussed shortly), while the parameter σ controls the shape of the Gaussian.
Euclidean distance is ordinarily used for r; however, the Mahalanobis distance measure
may yield superior results in certain problem domains, such as pattern recognition [12].

ϕ(r) = e−r2/2σ2
(1)

After each input value passes through the RBF layer, the weighted outputs from
the RBF nodes are linearly combined to yield the RBF network’s overall output [13]. An
illustrative example of the standard RBF neural network architecture is provided in Figure 1.
Importantly, it is only the weights between the RBF layer and the output layer (denoted
w1, w2, . . . wn in Figure 1) that need to be learned during the network training process.
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Each RBF node in an RBF neural network is characterized by a “center” and a “width”.
Each RBF node center takes the form of a vector of the same dimensionality as the input
vector and can be conveniently conceptualized as a geometric location within the input
space. For a Gaussian RBF node, the width is parameterized as the standard deviation, the
value of which controls the rate at which the node’s influence diminishes as input values
become more and more distant from the node’s center. During training, only those few RBF
nodes whose centers are closest to an input value will experience any sort of significant
activation, the effect of which is that only a small number of weights will be updated in
response to the input value. Once the locations of the RBF centers have been chosen, finding
optimal weights for an RBF network can be accomplished either through direct calculation
by using a pseudoinverse approach [5,14] or via gradient descent [10,15]. Notably, the
training process for RBF neural networks is often several orders of magnitude faster than
for MLP-based neural networks with corresponding degrees of function approximation
capability [5,16,17].

1.2. Selecting Widths and Centers for RBF Nodes

Although it is feasible to assign individual width values to each of the RBF nodes in
an RBF neural network, doing so is typically unnecessary. Indeed, research has shown that
Gaussian RBF networks using the same width value (i.e., the same standard deviation) for
every RBF node retain their universal function approximation capability [18]. Equation
(2) below defines a simple method for identifying the global width value σ to use for all
of the RBF nodes in an RBF network [10]. The parameter dmax in Equation (2) represents
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the maximum (typically Euclidean) distance between any two RBF node centers, while k
denotes the total number of RBF nodes in the neural network.

σ = dmax
√

2k (2)

While calculating the global width value to use in an RBF neural network is trivial,
choosing the most suitable locations for the RBF nodes’ centers is much less straightforward.
As noted previously, RBF neural networks are, in theory, universal function approximators;
however, in practice, the ability of an RBF network to accurately approximate a func-
tion depends critically on the locations that have been chosen for the centers of its RBF
nodes [10,19]. The reason for this is that the influence of each RBF node is localized to a
specific region within the input space, with the extent of the region of influence depending
on the value of the node’s width parameter [18]. A given RBF node’s influence on the
network’s output will be quite strong when the distance between an input vector and the
node’s center is small, but the extent of the node’s influence on the output will diminish
rapidly as the distance between the node’s center and the input vector increases (vide supra,
Equation (1)). Well-chosen centers will therefore allow the RBF network to more accurately
approximate a target function than if the locations of the centers had been chosen poorly.
This concept is illustrated for a target function with a single input value in Figure 2 below.
The width of each Gaussian curve in Figure 2 indicates the region of the input space over
which the corresponding RBF node exerts influence, while the size of each RBF node center
represents the magnitude of the corresponding node’s weight in the RBF network (denoted
w1, w2, . . . wn in Figure 1).
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As shown in Figure 2, the location of the RBF nodes’ centers plays a very important
role in the overall performance of the RBF neural network [19]. For this reason, the overall
task of training an RBF neural network is typically subdivided into two distinct phases,
with the first phase involving the selection of the RBF nodes’ centers and widths, and the
second phase involving the adjustment of the network’s weights with a view to minimizing
error [10].

By a wide margin, the two most common strategies for choosing the locations of an
RBF network’s centers are random sampling and k-means clustering [10,13]. Random
sampling is the simplest and fastest of these two common strategies. Using this approach,
a subset of k input values is randomly chosen from the available training data, with these k
input values then being used directly as the locations for the RBF network’s centers. This
approach is rational from the perspective of probability theory, since a sufficiently large
random sample will approximate the distribution of the underlying population reasonably
well [20]. As such, the resulting RBF nodes are likelier to be located near the regions of the
input space that have the highest probability density than if the centers had been positioned
equidistantly from one another within the input space.

The rationale underlying the k-means clustering strategy is similar to that of the
random sampling strategy; i.e., to locate the RBF centers in areas of the input space that
best represent the distribution of the underlying training data. Using the k-means approach,
the training data (or a sample thereof) are run through the k-means vector quantization
algorithm in order to group the input cases into k clusters. The centroids of the resulting
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k clusters are then used as the locations for the RBF nodes’ centers. Since the purpose
of clustering is to partition the input data into distinct groups of similar cases [21], the
k-means approach results in a solution in which each RBF center represents one distinct
group of similarly located cases within the input data, and for which the corresponding
RBF node will activate most strongly in the presence of an input value that is a member
of its own group. These properties and the relative ease of implementation have made
the k-means approach very popular among AI/ML practitioners when working with RBF
neural networks [22].

1.3. Research Goal

The preceding discussion introduced RBF neural networks and their benefits, ex-
plained the role of RBF centers in the overall performance of an RBF neural network,
and described the two most widely used methods of selecting the locations for an RBF
network’s centers. With this foundational information in mind, we are now well equipped
to understand the primary goal of the current research project.

In brief, the current paper seeks to develop a new algorithm—based on the concept
of an “opportunity matrix”—whose purpose is to select locations for an RBF network’s
centers that will consistently yield superior overall function approximation performance
for the RBF neural network. In pursuit of this goal, the following section first describes the
proposed opportunity matrix algorithm for selecting RBF node centers, and then provides
details about the series of experiments that were conducted in order to compare the
performance of the proposed algorithm against that of the standard random sampling and
k-means clustering techniques. The results of the experiments are subsequently presented
and discussed in Section 3. The paper concludes in Section 4 with a summary, a description
of the study’s limitations, and suggestions for future research opportunities in this area. A
graphical overview of the current study is provided in Figure 3 below.
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2. Materials and Methods

This section begins by introducing the concept of an opportunity matrix, and then
proceeds with a detailed description of the proposed opportunity matrix algorithm for
selecting the locations of RBF node centers in a radial basis function neural network.
Following these preliminaries, this section next describes the series of experiments that
were conducted in order to compare the performance of the proposed algorithm against
that of the standard random sampling and k-means clustering approaches to selecting
RBF node centers. For purposes of investigating the generalizability of the proposed
algorithm, these experiments involve both a real-world dataset from the steel industry and
the approximation of a variety of mathematical and statistical functions using a variety of
RBF neural network models, each of which relies on a different number of RBF nodes. The
results of the experiments—which reveal the overwhelming superiority of the proposed
opportunity matrix algorithm—are then presented and discussed in Section 3.

2.1. The Opportunity Matrix

The core concept underlying the proposed algorithm is that of an “opportunity matrix”.
In brief, an opportunity matrix is a fixed-size, d-dimensional container whose dimension-
ality matches that of the number of input features in the RBF network’s training data. If
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each training case contains a single input feature, the opportunity matrix will be a vector.
Similarly, if each training case consists of two input features, the opportunity matrix will
be two-dimensional, and so on. Each dimension in the opportunity matrix is mapped to
one of the input features in the training data, with the number of items in each dimen-
sion being determined by partitioning the range of values in the dimension’s associated
input feature into nd equidistantly spaced intervals. Alternatively, a quantile-based split
rather than an equidistant split may be used if the AI/ML practitioner prefers to take the
distributional properties of the data into account. Note that these methods of partitioning
can be implemented for both continuous and discrete input features, and can be readily
adapted for use with categorical features. As an illustrative example, imagine a scenario
in which an AI/ML practitioner wishes to develop an RBF neural network. The available
training data contain two continuous input features, a and b, with the range of feature a
being 0 ≤ a ≤ 10 and the range of feature b being 0 ≤ b ≤ 5. Further, assume that the
AI/ML practitioner wishes to partition both of the input features into five equidistantly
spaced intervals, such that na = 5 and nb = 5. In this scenario, the resulting opportunity
matrix would be structured as shown in Figure 4 below.
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In the scenario illustrated above, the opportunity matrix contains
d

∏
i=1

ni = 25 unique

elements, each of which represents a bounded region of the overall input space. The
first foundational idea of the opportunity matrix approach is that the centroid of each
of these bounded regions (which are signified by dots in Figure 3) represents a potential
opportunity for the location of an RBF node in a radial basis function neural network. It

naturally follows that the quantity
d

∏
i=1

ni defines the upper limit for the number of RBF

nodes that could feasibly appear in the network. An AI/ML practitioner must therefore be
judicious when choosing the number of intervals into which each input feature should be
partitioned. Note also that this framework can be easily extended into higher-dimensional
spaces to accommodate any possible number of input features.

The second foundational idea of the opportunity matrix approach is that the RBF
network is constructed incrementally by adding one RBF node at a time. To accomplish
this, the AI/ML practitioner begins by first selecting a reasonably sized random sample
of the training data. An initial RBF node is then added to the neural network structure,
with the location of the initial node’s center being chosen either randomly or by relying
on the centroid of all of the sample’s input features. The single weight for this simplest
of all possible RBF neural networks is then learned using the sample of the training data.
When training is complete, each element in the opportunity matrix is populated with the
average prediction error for all of the input values that lie within the element’s boundaries.
The opportunity matrix is then examined to identify the element with the largest average



Algorithms 2023, 16, 455 6 of 19

error that does not already have an associated RBF node, and that element’s centroid is
then used as the location for the next RBF node that is added to the neural network. The
opportunity matrix is then emptied and the process is repeated, with one new RBF node
being added during each iteration until a chosen stopping criterion has been met. An
illustrative example of an opportunity matrix being used to iteratively identify the locations
of new RBF nodes is provided in Figure 5. The number appearing inside each element of
the opportunity matrix in Figure 5 indicates the mean prediction error for input values that
fall within the element’s boundaries during the corresponding iteration.
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Recall from the previous discussion that the potential influence of each RBF node
on the neural network’s output is maximal at the node’s center and that this influence
diminishes as input values grow more and more distant from the node’s center. With
this in mind, one can readily understand how iteratively locating new RBF nodes in
regions of the input space where the mean prediction error is currently highest can yield
substantial improvements in the RBF neural network’s overall performance. This tendency
is illustrated in the transition from iteration 01 to iteration 02 in Figure 5 above.

2.2. The Opportunity Matrix RBF Center Selection Algorithm

Having related the foundational concepts underlying the opportunity matrix and its
use, we are now properly equipped to proceed with a complete description of the oppor-
tunity matrix RBF center selection algorithm. In what follows, the steps in the Algorithm
1 are described textually rather than symbolically in order to ensure clarity, as well as to
allow for additional commentary.

Algorithm 1: Using an opportunity matrix to select centers for an RBF neural network.

1. Identify the range of values for each input feature in the training data.
2 Choose the number of equidistantly spaced intervals into which the range of values for each

input feature should be partitioned, and then use the results to construct a corresponding
opportunity matrix (vide supra, Section 2.1). Alternatively, each feature may be partitioned
using a quantile split in order to account for the distributional properties of its underlying
data.

Comments: As noted previously, the product of the number of partitions for each input
feature defines the maximum number of RBF nodes that can potentially appear in the final
RBF neural network, since only one RBF node may be derived from each element of the
opportunity matrix. For example, a two-dimensional opportunity matrix with five
partitions for each input feature would yield a maximum of 5 × 5 = 25 RBF nodes, while
a three-dimensional opportunity matrix with 100 partitions for each input feature would
yield a maximum of 100 × 100 × 100 = 1, 000, 000 RBF nodes. The size of the opportunity
matrix must therefore be chosen judiciously.
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Algorithm 1: Using an opportunity matrix to select centers for an RBF neural network.

3 Compute the centroid for each matrix element’s corresponding bounded region.
4 Take a reasonably sized sample of the training data. This can be done randomly or by using

stratified random sampling [23].

Comments: If random sampling is used, the sample size should ideally be sufficiently large
to ensure that the bounded region for each element in the opportunity matrix is likely to
contain several input values. For example, many of the elements of a 100 × 100
opportunity matrix would be empty if the sample data consisted of only 5000 cases, since
the opportunity matrix itself would contain 100 × 100 = 10, 000 elements. From a
practical perspective, the implications of an empty element in the opportunity matrix are
simply that the element’s corresponding location in the input space would never be chosen
as the location for an RBF node center. The total size of the opportunity matrix should thus
be considered carefully in light of the number of cases in the sample training data. If desired,
stratified random sampling may be used to guarantee that each bounded region of the
opportunity matrix contains one or more input values.

5 If this is the initial iteration:

a. Identify the center for the first RBF node and add the new node to the neural network
structure.

Comments: The initial center’s location may be chosen randomly or by computing the
centroid of the input features in the sample data.

b. Compute the global RBF width value to use for the initial iteration.

Comments: Since Equation (2) presupposes the existence of multiple RBF nodes, the
largest distance between the first RBF node’s center and any of the input values in the
sample data may be substituted for the dmax parameter in Equation (2) during the
initial iteration.

6 Compute the weights for the current RBF neural network using the sample data.

Comments: This can be accomplished either through direct calculation by using a
pseudoinverse approach [5,14], or via gradient descent [10,15].

7 If the stopping criterion has been met, then use the complete set of training data in
conjunction with the current collection of RBF node centers and the current global width
value to train the final neural network model. When training is complete, save the resulting
final model and terminate.

Comments: Any reasonable stopping criterion may be used to determine if the current set of
RBF nodes is satisfactory. Examples include stopping once the neural network contains a
specified number of RBF nodes or stopping once the value of the loss function crosses a
specified threshold. If the latter strategy is used, the algorithm has the additional benefit of
being able to select the optimal number of RBF nodes to use in the neural network.

8 For each element in the opportunity matrix that does not already have an associated RBF
node in the neural network:

a. Compute the mean prediction error for all of the input values that fall within the
current element’s bounded region.

b. If the mean prediction error for the current element is the largest thus far observed,
then fetch and store the element’s corresponding centroid (which was computed in
Step #3).

9 Add a new RBF node to the neural network structure using the centroid identified in Step #8
as the new node’s center.

10 Compute and apply the new global RBF width value using Equation (2).
11 Go to Step #4.

The proposed opportunity matrix algorithm is summarized graphically in Figure 6
below.
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2.3. Evaluative Experiments

Having presented the proposed opportunity matrix algorithm for selecting RBF node
centers, it is now possible to describe the series of experiments that were conducted in
order to compare the performance of the opportunity matrix approach against that of the
standard random sampling and k-means clustering techniques. In total, 25 experiments
were conducted in order to evaluate the performance characteristics of the competing
RBF node selection methods under a variety of different conditions. The first 20 of these
experiments involved the task of using RBF neural networks to approximate four differ-
ent functions, two of which were mathematical optimization functions (Himmelblau’s
function [24] and the Hosaki function [25]) and two of which were statistical functions
(the Poisson distribution probability mass function [26] and the t-distribution cumulative
distribution function [27]). These specific functions were chosen because of their common
use in optimization research and statistics, as well as to enhance the generalizability of the
experiments by including functions from different domains that involve both continuous
and discrete parameters. Visualizations of these four functions are provided in Figures 7–10
below. The color spectrum in these figures ranges from blue to red, signaling compara-
tively small to large output values, respectively. For the remaining five experiments, the
performance of the proposed opportunity matrix algorithm was compared with that of the
standard random sampling and k-means clustering techniques using a real-world energy
consumption dataset from the steel industry [28]. This dataset, which is publicly available
from the UC Irvine Machine Learning Repository [29], contains several continuous and
categorical features that were used to predict the electrical power consumption of a steel
manufacturing facility.
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Formally, the four functions depicted above are defined as shown in Equations (3)–(6)
below. In the experiments, values for Himmelblau’s function and the Hosaki function were
computed directly, while values for the Poisson distribution probability mass function and
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the t-distribution cumulative distribution function were computed using the Python SciPy
library [30].

Himmelblau’s function:

f (x, y) =
(

x2 + y− 11
)2

+
(

x + y2 − 7
)2

(3)

Hosaki function:

f (x1, x2) =

(
1− 8x1 + 7x2

1 −
7
3

x3
1 +

1
4

x4
1

)
x2

2e−x2 (4)

Poisson distribution probability mass function (PMF):

pm f (η, λ) =
ληe−λ

η!
(5)

where η is the number of occurrences and λ is the expected value.
t-Distribution cumulative distribution function (CDF):

cd f (t, d f ) = 1− 1
2

Ix(t)

(
d f
2

,
1
2

)
(6)

where t is the observed t-value, d f is the degrees of freedom, I is the regularized incomplete
beta function [31], and x(t) = d f

t2 + d f .
In addition to the steel industry power consumption dataset, the functions defined

in Equations (3)–(6), and the three different RBF node selection methods, five possi-
ble values for the number of RBF nodes (k) were used in the experiments, with k ∈
{16, 32, 64, 128, 256}. Each experimental condition thus involved (1) using three RBF
networks, each of which sought to approximate one of the four functions defined above
or predict the power consumption of a steel manufacturing facility; (2) using one of the
possible values of k for the number of RBF nodes in those networks; and (3) using the three
competing RBF node selection methods to choose the locations of the RBF node centers,
with one of the different methods (random sampling, k-means clustering, or the proposed
opportunity matrix algorithm) being used for each of the experiment’s three RBF networks.
Given the five different function approximation tasks and the five possible values for the
number of RBF nodes, a total of 5× 5 = 25 experiments were carried out in the study, each
of which compared the performances of the three competing RBF node selection methods.
Each experiment was also repeated 30 times in order to ensure that the distributions of
the resulting performance metrics would be approximately Gaussian, per the central limit
theorem [32].

In each experiment, the same data were used to train all three competing RBF neural
networks. Each of these neural networks also had precisely the same structure (including
the number of RBF nodes) and relied on the same Adam stochastic optimization algorithm
for learning the network’s weights [33]. The only difference among the competing neural
networks was therefore the locations of their RBF node centers, which, as noted above,
were chosen by a different RBF node selection method for each network. In this way, any
statistically significant differences in the function approximation performance among the
three competing neural networks could be attributed solely to the method that was used to
select the networks’ RBF node centers.

With specific respect to the data, the real-world steel industry dataset contained 35,040
cases, while 1,000,000 cases were used in each experimental trial involving one of the
four mathematical optimization and statistical functions. With respect to the latter, the
data were generated randomly within the experimental boundaries of each function’s
input parameters. Either a uniform continuous or uniform discrete sampling distribution
was used when randomly generating these data, depending on the nature of each input
parameter. After computing the input parameters’ associated output values for each
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mathematical or statistical function, each dataset was then randomly split into training
and testing sets, with the training set consisting of 80% of the cases and the testing set
containing the remaining 20% of the cases. For the experiments involving Himmelblau’s
function, the x and y input parameters were both bounded by the interval [−5.0, 5.0],
while for the experiments involving the Hosaki function, the x1 and x2 input parameters
were both bounded by the interval [0.0, 5.0]. For the experiments involving the Poisson
distribution probability mass function, the η parameter used values in the set {0, 1, . . . , 30},
while the λ parameter was bounded by the interval [0.0, 30.0]. Finally, for the experiments
involving the t-distribution cumulative distribution function, values for the t parameter
were bounded by the interval [−5.0, 5.0], while the d f parameter was constrained to values
in the set {1, 2, . . . , 30}. All of these experimental boundaries are included in the depictions
of the four test functions provided in Figures 7–10.

Since using the opportunity matrix algorithm to obtain the locations of RBF node
centers requires an AI/ML practitioner to make several choices, it is necessary and appro-
priate to provide specific details about how the algorithm was used in the current study in
order to ensure that the study’s results can be reproduced. To begin, Step #2 of Algorithm 1
requires a decision about the number of intervals into which the range of values for each
input parameter should be partitioned. In the current study, the range of values for all
of the mathematical and statistical functions’ continuous input features was subdivided
into 100 equidistantly spaced intervals, while for discrete input features, each unique item
in the sets defined immediately above was used as the basis for its own partition in the
feature’s corresponding dimension of the opportunity matrix. For the real-world steel
industry dataset, each of the continuous input features was partitioned using a quartile
split, with the values for each discrete input feature again being used as the basis for its
own partition in the opportunity matrix.

Step #4 in Algorithm 1 requires a reasonably sized sample of the overall training data.
For the experiments involving the mathematical and statistical functions, 5% (or 40,000)
of the available cases were randomly sampled from the overall training data for use in
the opportunity matrix algorithm, while a random sample of 10,000 cases was used for
the experiments involving the steel industry power consumption dataset. For Step #7 in
Algorithm 1, the value of k that was being considered in the current experimental trial was
used as the stopping criterion, thus ensuring that a sufficient number of RBF node centers
would be available to support the needs of the current trial. Finally, the RBF networks used
in the opportunity matrix algorithm were trained using the Adam stochastic optimizer [33]
with a batch size of 128 cases across 256 training epochs.

As noted previously, the overall goal of the experiments was to compare the RBF
node selection performance of the proposed opportunity matrix algorithm against that
of the standard random sampling and k-means clustering methods under a wide variety
of different conditions. Each of these conditions was evaluated in a distinct experiment
involving 30 consecutive trials. For each trial, three RBF neural networks were used that
relied on the same data, structure, and training algorithm, with the only difference among
the networks being the method that was used to select the locations of their RBF node
centers. Each final neural network in the trials was trained using a batch size of 128 training
cases across 1024 epochs, after which training was considered complete. The experiments
themselves were run sequentially using a fixed hardware configuration on the Google
Colaboratory platform [34].

When the three RBF neural networks that were considered in each experimental trial
had been fully trained, their performance was assessed by measuring the mean absolute
error (MAE) of the networks’ associated predictions on the data in the testing set. As with
the training data, exactly the same testing data were used to evaluate all of the neural
networks in each trial. With 30 trials per experiment, every experiment resulted in 30
MAE values for each of the three competing methods of selecting RBF node centers that
corresponded to the experiment’s unique combination of test function and number of
RBF nodes within the study’s overall experimental framework. Finally, the MAE values
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obtained from the opportunity matrix algorithm, the random sampling method, and the
k-means clustering method were statistically compared against each other using Welch’s t-
tests [35]. Unlike most other t-tests, Welch’s t-tests allow for the comparison of independent
samples that have unequal variances. Since there was no ex ante reason to expect the
distributional variances of the performance metrics obtained from each competing RBF
center selection method to be equal, Welch’s t-tests provided an appropriate statistical
foundation for comparing the experimental results.

3. Results and Discussion

As described in the previous section, the experiments carried out in this study were
designed to compare the performance of the proposed opportunity matrix algorithm against
that of the standard random sampling and k-means clustering methods of selecting RBF
node centers under a variety of different conditions. Each of these experimental conditions
involved assessing the function approximation performance of an RBF neural network
with 16, 32, 64, 128, or 256 RBF nodes using either the real-world steel industry dataset or
one of the four functions described in Section 2.3, with each experiment being repeated
across 30 trials. The results obtained from the experiments for each of the five function
approximation tasks are presented in Tables 1–5 below.

Table 1. Experimental results for the approximation of Himmelblau’s function.

Method of Selecting
Centers for RBF Nodes
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Table 4. Experimental results for the approximation of the t-distribution CDF.
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Table 5. Experimental results for the real-world steel industry energy consumption dataset.
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When considering Tables 1–5 above, it is clear that the average mean absolute error
of the RBF neural networks’ predictions tends to decrease as the number of RBF nodes
increases, regardless of the function being approximated or the method that was used to
select the locations of the nodes’ centers. This behavior is consistent with both theory and
past research into RBF neural networks [10,18], and serves to strengthen the face validity
of the study’s experimental framework. As noted in Section 1, RBF neural networks are
capable of approximating any continuous function to any arbitrary degree of precision,



Algorithms 2023, 16, 455 14 of 19

and it is evident that this function approximation capability depends in part on the number
of RBF nodes that are included in the network architecture. What is also evident from the
average MAEs reported in Tables 1–5 above is that the ability of an RBF neural network
to accurately approximate a function depends critically on the locations of the network’s
RBF node centers. Put simply, an RBF neural network with well-chosen centers will deliver
more accurate predictions than an otherwise identical RBF neural network with poorly
chosen centers. With this in mind, the primary goal of the current research was to propose
a new algorithm for selecting RBF centers based on the concept of an opportunity matrix,
and then experimentally investigate the proposed algorithm’s performance in comparison
with the two most widely used methods of selecting centers.

Generally speaking, Welch’s t-test results reported in Tables 1–5 reveal that the pro-
posed opportunity matrix algorithm is typically able to statistically outperform the standard
random sampling and k-means clustering methods of selecting centers for RBF neural net-
works, often by a very large margin. Indeed, among the 25 head-to-head comparisons
with the random sampling method, the performance of the opportunity matrix algorithm
was statistically superior in 24 of the experimental conditions and was statistically indis-
tinguishable in the remaining condition. Among the 25 head-to-head comparisons with
the k-means clustering method, the performance of the opportunity matrix algorithm was
statistically superior in 21 of the experimental conditions, statistically indistinguishable in 3
experimental conditions, and statistically inferior in just 1 of the 25 conditions. Collectively,
then, the proposed opportunity matrix algorithm was able to select RBF node centers that
resulted in statistically better-performing RBF neural networks in 90% of the head-to-head
comparisons with alternative methods that were considered in the experiments. Among
the remaining head-to-head comparisons, the performance of the proposed opportunity
matrix algorithm was statistically identical to an alternative method in 8% of the cases and
was statistically inferior in only 2% of the cases. The results of the experiments, therefore,
indicate that the proposed opportunity matrix algorithm is generally superior to the stan-
dard random sampling and k-means clustering methods in terms of its ability to select
high-quality locations for RBF node centers. As shown in the experiments, these superior
center locations directly result in better-performing RBF neural networks.

Given the observed superiority of the proposed opportunity matrix algorithm, it may
be instructive to consider the locations of the RBF node centers that were chosen by the
algorithm in comparison with the standard random sampling and k-means techniques.
Figure 11 below, therefore, provides an illustrative example of the RBF center locations
that were chosen by the opportunity matrix, random sampling, and k-means clustering
techniques for a neural network with 64 RBF nodes that was seeking to approximate
Himmelblau’s function.
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As shown in Figure 11 above, excepting for one centrally located RBF node center, all
of the other RBF centers chosen by the opportunity matrix algorithm were peripherally
located when attempting to approximate Himmelblau’s function. By contrast, the RBF
center locations chosen by the k-means clustering technique were approximately equidis-
tantly distributed throughout the bounded region of the input space, while no obvious
distributional pattern was present for the RBF center locations chosen by the random
sampling technique. Recalling from Section 2 that the values for the input parameters in the
experiments involving Himmelblau’s function were randomly generated from a uniform
distribution, the theoretical rationale underlying the use of random sampling and k-means
clustering is evident in Figure 11; i.e., to locate the RBF node centers in areas of the input
space that best represent the distribution of the input features in the training data.

Rather than focusing exclusively on the distribution of the inputs, the theoretical
rationale underlying the opportunity matrix technique is to locate the RBF node centers
in areas of the input space that are, on average, the largest sources of prediction error.
When considering the RBF center locations chosen by the opportunity matrix algorithm
in Figure 11 in conjunction with the visualization of Himmelblau’s function provided in
Figure 7, it becomes immediately clear why the opportunity matrix algorithm chose the
RBF center locations that it did—to target the areas of the input space that otherwise would
likely yield large prediction errors. These visual elements are reproduced and presented
side by side as Figure 12 below for the convenience of the reader. The core insight to
be learned from this discussion—and the reason for the opportunity matrix algorithm’s
superior performance—is that identifying and taking steps to mitigate the most significant
sources of prediction error appears to be a very effective strategy for selecting the locations
of the centers in an RBF neural network.
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Finally, some consideration of the computational resources and wall-clock time re-
quired by each competing method of selecting RBF node center locations is merited. As-
suming that the available training cases have been randomly shuffled, then the random
sampling technique can reasonably be expected to require minimal memory and wall-clock
time, since one may simply use the input values for the first k cases in the training data as
the center locations for a network with k RBF nodes. By contrast, the k-means clustering
technique can be expected to require much more memory and wall-clock time than random
sampling, since the k-means clustering algorithm is known to be NP-hard [36] and requires
the repeated calculation of the distance between each of the k centroids and every available
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case in the training data. The proposed opportunity matrix algorithm can, of course, be
expected to require substantially more wall-clock time than either of the random sampling
or k-means clustering methods, since it relies on an iterative approach in which one RBF
node is identified per iteration, with the additional requirement that the weights of an RBF
neural network be learned during each of those iterations.

The expectations related above notwithstanding, a direct evaluation of the memory and
wall-clock time required by each method of selecting RBF center locations was undertaken
in order to provide a measure of empirical insight into this issue, with the approximation of
the Hosaki function serving as the basis of the evaluation. To ensure equitable comparisons,
the memory and wall-clock time requirements for all three RBF node selection methods
were measured using a single thread on a single CPU. When conducting the comparisons,
the sample size and RBF neural network training parameters that were used to select
the RBF center locations with the opportunity matrix technique matched those described
previously in Section 2. The results of these measurements are provided in Table 6 below.
Note that the peak memory requirements shown in the table include overhead items that
were needed to run the Google Colaboratory environment, such as external libraries and
the memory profiler itself. Nevertheless, these values provide insights into the comparative
memory demands of the three different methods of selecting RBF center locations.

Table 6. Average peak memory and wall-clock time required to select RBF node centers for the
Hosaki function.

Method of Selecting
Centers for RBF Nodes
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As shown in Table 6 above, the random sampling method required both the least
memory and the least wall-clock time to select RBF node centers for the Hosaki function.
Although the wall-clock time required by the k-means clustering method fell between the
time required by the random sampling and opportunity matrix methods, the k-means
clustering method consistently required the largest amount of memory to complete the
RBF center selection task. As expected, the opportunity matrix algorithm required much
more wall-clock time than either of the other two competing methods, with its memory re-
quirements falling between those of the random sampling and k-means clustering methods.
It is important to note, however, that the measurements reported in Table 6 were obtained
using a single thread on a single CPU. Since the opportunity matrix algorithm involves
the iterative training of a series of RBF neural networks, one might reasonably expect that
substantially less wall-clock time would be required by the opportunity matrix method if a
hardware accelerator, such as a GPU or a tensor processing unit, were used to facilitate the
RBF node selection process.

4. Summary, Limitations, and Concluding Remarks
4.1. Summary of Contributions and Findings

This paper proposed a new algorithm based on the concept of an opportunity matrix
for selecting the locations of the centers in a radial basis function (RBF) neural network. The
opportunity matrix approach involves first partitioning the input space into several regions,
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and then iteratively adding one RBF node at a time to the structure of the neural network.
In each iteration, a small sample of the available training data is used as the basis for
estimating the weights for the current RBF neural network architecture. These weights are
subsequently utilized to generate predictions for the sample inputs, with the corresponding
prediction errors being recorded in the appropriate regions of the opportunity matrix.
Finally, the opportunity matrix is examined to identify the region of the input space that
currently exhibits the largest average error, and the centroid of that region is used as the
center for the next RBF node that is added to the neural network structure. New RBF nodes
are iteratively added to the neural network in this manner until a stopping criterion is met.

A large set of experiments was conducted in order to evaluate the performance of
the proposed opportunity matrix algorithm in comparison with the two most widely used
methods of selecting centers for RBF neural networks, namely, random sampling of the
training data and k-means clustering. The experiments involved the task of using RBF
neural networks to approximate four different well-known mathematical optimization and
statistical functions or to predict the energy consumption for a steel manufacturing facility.
To ensure generalizability, two of these functions used only continuous input parameters,
while the remaining two functions and the real-world steel industry dataset included both
continuous and discrete input parameters. A variety of neural network architectures were
also considered in the experiments, with each network containing 16, 32, 64, 128, or 256
RBF nodes. The results of the experiments revealed the general superiority of the proposed
opportunity matrix algorithm. Specifically, in head-to-head comparisons with the standard
random sampling and k-means clustering techniques, RBF neural networks whose center
locations were chosen using the opportunity matrix approach were found to generate
statistically superior predictions 90% of the time. Among the remaining experimental
conditions, the opportunity matrix algorithm yielded statistically identical outcomes in 8%
of the cases, and was found to perform more poorly than one of the standard methods in
only 2% of the cases. It can therefore be concluded that using the proposed opportunity
matrix algorithm to select the locations of RBF node centers will, on average, result in RBF
neural networks with superior function approximation capabilities.

4.2. Limitations and Opportunities for Future Research

Although careful and systematic efforts were taken in this study to investigate the
performance of the proposed opportunity matrix algorithm in comparison with that of the
standard random sampling and k-means clustering methods, there nevertheless remain
several limitations to this work that require acknowledgement. First, the experiments
described herein relied on one real-world dataset and four different mathematical optimiza-
tion and statistical functions. Care was taken to select well-known functions and a publicly
available dataset that relied on both continuous and discrete input parameters, but any
number of other functions or real-world datasets could have been used instead of the those
that were considered in the study. Future work in this area should therefore endeavor to
assess the performance of the opportunity matrix algorithm with other real-world datasets
and other mathematical or statistical functions.

In addition to relying on just four different functions and one real-world dataset, the
findings of the experiments reported herein are also limited insofar as each of the five testing
scenarios considered in the study used a relatively small number of input parameters and
involved just one output value each. While the opportunity matrix framework allows for
any positive number of input parameters, and while there is no theoretical or mathematical
reason to expect that the opportunity matrix algorithm would perform differently with
functions that require a large number of input parameters or that have more than one
output value, these conditions have not yet been assessed experimentally. Future work in
this area should therefore endeavor to assess the performance of the opportunity matrix
algorithm when using functions that require a wider variety of inputs and outputs.

Next, the opportunity matrix algorithm includes several tunable parameters whose
values must be chosen by the AI/ML practitioner. Examples of these parameters include the
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number of intervals into which the range of values for each input parameter is partitioned,
the size of the sample data that are used to iteratively identify RBF node center locations,
and the stopping criterion that is used to terminate the algorithm. These tunable parameters
are suitable targets for hyperparameter optimization, and future work in this area may
be able to identify appropriate optimization techniques that can further improve the
performance of the opportunity matrix algorithm.

Finally, the opportunity matrix algorithm requires substantially more wall-clock time
than the random sampling or k-means clustering methods in order to choose the locations
for an equivalent number of RBF nodes. It is reasonable to expect that this notable dif-
ferential in wall-clock time could be reduced through the use of a hardware accelerator
when running the opportunity matrix algorithm; however, this expectation has not yet
been assed experimentally. AI/ML practitioners may take some comfort in knowing that
the opportunity matrix algorithm will almost always yield a better-performing RBF neural
network, but are nevertheless advised to consider the comparatively large amount of wall-
clock time required by the opportunity matrix approach before deciding to apply it to their
particular use case.

4.3. Concluding Remarks

This paper clearly demonstrated that the locations chosen for the RBF node centers in
a radial basis function network are critically important to the network’s ability to generate
accurate predictions. While it is true that an AI/ML practitioner can increase the accuracy
of an RBF neural network by simply and lazily adding more RBF nodes to the network ar-
chitecture, this is, I think, an incorrect approach. Indeed, the law of parsimony, as elegantly
expressed in Occam’s razor, should serve as a guiding principle in the design of RBF neural
network architectures. Excessively complex network structures require more time to train,
make predictions more slowly, and unnecessarily consume finite computational resources.
Why should a neural network with 100 RBF nodes be used when a network containing just
10 nodes with well-chosen RBF centers can generate equally accurate outputs? Radial basis
function neural networks have many desirable properties—including fast learning, simple
architecture, and the ability to accurately approximate nonlinear functions—that may allow
them to play a key role in the modular development of artificial general intelligence [37].
To reach the scale of complexity and capability of the human brain, however, will require
careful stewardship of computational resources. Approaches such as the opportunity
matrix algorithm described herein have great potential to aid in these efforts by ensuring
that each individual RBF neural network is as compact and efficient as possible.
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