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Abstract: Training and evaluating the performance of many competing Artificial Intelligence (AI)/
Machine Learning (ML) models can be very time-consuming and expensive. Furthermore, the costs
associated with this hyperparameter optimization task grow exponentially when cross validation is
used during the model selection process. Finding ways of quickly identifying high-performing models
when conducting hyperparameter optimization with cross validation is hence an important problem
in AI/ML research. Among the proposed methods of accelerating hyperparameter optimization,
successive halving has emerged as a popular, state-of-the-art early stopping algorithm. Concurrently,
recent work on cross validation has yielded a greedy cross validation algorithm that prioritizes the
most promising candidate AI/ML models during the early stages of the model selection process. The
current paper proposes a greedy successive halving algorithm in which greedy cross validation is
integrated into successive halving. An extensive series of experiments is then conducted to evaluate
the comparative performance of the proposed greedy successive halving algorithm. The results
show that the quality of the AI/ML models selected by the greedy successive halving algorithm is
statistically identical to those selected by standard successive halving, but that greedy successive
halving is typically more than 3.5 times faster than standard successive halving.

Keywords: hyperparameter optimization; successive halving; greedy cross validation; machine
learning; artificial intelligence

1. Introduction

Artificial Intelligence (AI) and Machine Learning (ML) practitioners typically need to
train and evaluate the performance of many different candidate models when developing an
AI/ML-based solution [1,2]. The term model as it is being used here refers to the combination
of a particular ML algorithm (e.g., linear regression, random forests, neural networks, etc.)
and the vector of values to use for the algorithm’s hyperparameters, which are configurable
settings that affect or control the learning process [3]. Such hyperparameters may be
algorithmic (e.g., the choice of optimizer or the learning rate), or they may define the
structure of an ML model itself (e.g., the number of hidden layers or nodes per layer in a
deep neural network). The process of generating a candidate ML model is conceptually
illustrated in Figure 1.
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The art and science of searching for the combination of hyperparameter settings that
yields the best-performing ML model is known as hyperparameter optimization [1], and it is
this activity that resides at the core of the current paper. Using hyperparameter optimization
is standard practice when developing ML-based solutions since no single ML algorithm or
set of hyperparameter values will perform best in all use cases or with all datasets [4,5].

When performed competently, hyperparameter optimization identifies an ML model
that yields optimal or near-optimal performance. Such an outcome has many obvious bene-
fits, particularly in competitive contexts such as business or national defense. Nevertheless,
hyperparameter optimization is plagued by a set of ubiquitous problems. First, many
hyperparameters are real-valued. This suggests that there are often an infinite number
of possible models in a given ML scenario, which makes it mathematically impossible to
conduct an exhaustive search for an optimal model. Although training and evaluating an
infinite number of candidate models is not possible, it is feasible to consider a large, finite
set of models. Using hyperparameter optimization to train and evaluate the comparative
performance of hundreds or thousands of candidate ML models can, however, be very
time-consuming and expensive, particularly in the era of big data wherein training just one
model may take hours or days [6]. Finally, training and evaluating ML models commonly
relies on cross validation (discussed later), which can exponentially increase the time and
costs associated with hyperparameter optimization [7]. In light of these considerations,
AI/ML practitioners often find themselves in an awkward situation: on the one hand,
hyperparameter optimization must be used to find the best-performing model possible
given the available budget, but on the other hand, hyperparameter optimization can be both
very expensive and very time consuming, and no researcher or organization is blessed with
an infinite budget. Finding methods of reducing the time and other costs associated with
hyperparameter optimization is therefore of great interest to the AI/ML community [8].

1.1. Successive Halving

Given the time and cost savings that can be realized via rapid hyperparameter opti-
mization, it is perhaps not surprising that a variety of algorithms have been proposed with
a view toward accelerating the hyperparameter optimization process [1,9–14]. Notable
among these algorithms is a technique known as successive halving [11], which features
prominently in the current study. In brief, successive halving is an iterative hyperparameter
optimization method in which the number of candidate models decreases exponentially
from one iteration to the next, while the number of training cases increases exponentially
from one iteration to the next. The general strategy employed by the successive halving al-
gorithm to quickly evaluate a set of candidate models is very similar to a single-elimination
tournament. To begin, the algorithm uses a small number of training cases to quickly
identify and cull unpromising candidate models. Models that survive to the next round are
evaluated more thoroughly by using a larger proportion of the available data. This process
repeats until only a few candidate models remain, which are then trained and evaluated
using all of the available data.

Successive halving is classified as an early stopping-based approach to hyperparameter
optimization because it abandons almost all candidate models without having trained or
evaluated them using the complete set of training data. Successive halving has become
quite popular due to its state-of-the-art performance and its recent inclusion in Python’s
widely used scikit-learn machine learning library (implemented as the HalvingGridSearchCV
and HalvingRandomSearchCV hyperparameter optimizers) [15]. An illustrative example of
successive halving is depicted graphically in Figure 2 below, and a complete description of
the successive halving algorithm can be found in Jamieson and Talwalkar [11].
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1.2. Evaluating ML Model Performance Using Standard k-Fold Cross Validation

As noted previously, training and evaluating ML models commonly relies on a process
known as cross validation. In standard k-fold cross validation, the available training data are
split into k groups of approximately equal size (called folds). Each fold is then iteratively
used as a testing set to evaluate a candidate ML model that has been trained using the
remaining k-1 folds of training data [16]. After k model evaluation cycles, each fold will
have been used as a testing set exactly once. The overall performance of the candidate
model can then be quantified as the mean of the performance measurements obtained from
each of the k model evaluation cycles. In addition to its ability to reveal problems with
selection bias and overfitting, k-fold cross validation is commonly used when evaluating
ML models because it provides insights into how well each candidate model will perform in
the real world when it encounters input data that were not used during training. Standard
k-fold cross validation also maximizes the value of the available training data by allowing
every training case to be used for both training and testing in a statistically defensible way.
These advantages notwithstanding, k-fold cross validation requires each candidate model
to be trained and tested k times, thus exponentially increasing the total amount of work
that is required to complete the overall hyperparameter optimization process. The standard
k-fold cross validation process (with k = 5 folds) is shown in Figure 3.
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1.3. The Role of Standard Cross Validation in Hyperparameter Optimization

Many methods of performing rapid hyperparameter optimization have been pro-
posed, including Bayesian methods [13], early stopping methods [11,12], evolutionary
methods [14], hypergradient methods [9,10], and greedy cross validation [8], among others.
Regardless of the specific approach taken, the goal of each of these methods is to identify
an optimal or near-optimal ML model as quickly as possible. Except for greedy cross
validation (discussed shortly), all of these hyperparameter methods treat cross validation
as a “black box” process. Put differently, these methods are only interested in the output
of the cross-validation process—which is typically a measurement of a candidate model’s
overall performance—without caring about how that output was generated. An example
of standard cross validation being used as a black-box process in the milieu of the suc-
cessive halving algorithm is illustrated in Figure 4 below. Although this figure focuses
specifically on successive halving, comparable figures could be readily drawn to illustrate
how cross validation is similarly used as a black-box process by other hyperparameter
optimization algorithms.
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1.4. Greedy Cross Validation

Greedy cross validation is a recently developed method that uses a modified version
of cross validation in conjunction with partial performance metrics to focus resources
on the most promising candidate models during the early stages of the hyperparameter
optimization process [8]. In contrast to other hyperparameter optimization algorithms,
greedy cross validation capitalizes on what is happening inside the “black box”. Recall that
standard cross validation considers one candidate model at a time, sequentially evaluating
all of the model’s folds before calculating the model’s overall performance metric and then
proceeding to the next model [16]. Instead of completely considering one ML model at a
time, greedy cross validation begins by first evaluating one fold for each of the candidate
models being considered (as used herein, “evaluating a fold” means using the specified
fold to test the performance of an ML model that has been trained using the remaining
folds. Fully evaluating a model thus requires the evaluation of k folds). This process yields
a partial performance metric for each ML model that represents the current best estimate of
the model’s overall quality. From this point forward, the greedy cross validation algorithm
always greedily pursues the most promising available option by evaluating the next fold
for whichever candidate model currently has the best-known level of performance. After
evaluating a fold, the current mean performance for the fold’s corresponding candidate
model is updated, after which the algorithm again pursues the most promising available
option. This process continues until either all of the folds for all of the candidate ML models
have been evaluated, or until a stopping criterion (such as a time limit or the exhaustion
of a computational budget) has been reached [8]. In this way, greedy cross validation
directs computational resources to the most promising candidate models early in the search
process and will typically complete a full evaluation of the best-performing ML models
long before completing its evaluation of the worst-performing models. An illustrative
example of greedy cross validation is provided in Figure 5 and a complete description of
the greedy cross validation algorithm can be found in Soper [8].



Algorithms 2023, 16, 17 5 of 18

Algorithms 2023, 15, x FOR PEER REVIEW 5 of 19 
 

best estimate of the model’s overall quality. From this point forward, the greedy cross 
validation algorithm always greedily pursues the most promising available option by 
evaluating the next fold for whichever candidate model currently has the best-known 
level of performance. After evaluating a fold, the current mean performance for the fold’s 
corresponding candidate model is updated, after which the algorithm again pursues the 
most promising available option. This process continues until either all of the folds for all 
of the candidate ML models have been evaluated, or until a stopping criterion (such as a 
time limit or the exhaustion of a computational budget) has been reached [8]. In this way, 
greedy cross validation directs computational resources to the most promising candidate 
models early in the search process and will typically complete a full evaluation of the best-
performing ML models long before completing its evaluation of the worst-performing 
models. An illustrative example of greedy cross validation is provided in Figure 5 and a 
complete description of the greedy cross validation algorithm can be found in Soper [8]. 

 
Figure 5. An illustrative example of greedy cross validation. Adapted from Soper [8]. 

1.5. The Path Ahead 
The preceding discussion introduced hyperparameter optimization, successive halv-

ing, and the standard and greedy k-fold cross validation methods, all of which are essen-
tial foundation stones upon which the primary contributions of this paper will be built. In 
brief, the following sections of this paper are dedicated to developing and rigorously eval-
uating a new hyperparameter optimization algorithm that integrates greedy cross valida-
tion and successive halving. Given the critical need among AI/ML practitioners for fast 
and effective hyperparameter optimization methods, the primary goal of this new algo-
rithm is to be able to select ML models of the same quality as those selected by successive 
halving but to do so much more quickly. Put differently, this research seeks to develop a 
greedy successive halving algorithm that is equivalent to standard successive halving in 
terms of its ability to select high-quality ML models, but which requires much less time 
than standard successive halving to perform that ML model selection task. Since standard 
successive halving is a very popular, state-of-the-art early stopping method for perform-
ing hyperparameter optimization, a new algorithm that can be rigorously shown to out-
perform standard successive halving would represent a noteworthy contribution to the 
AI/ML community. The balance of this paper seeks to make just such a contribution. 

  

Figure 5. An illustrative example of greedy cross validation. Adapted from Soper [8].

1.5. The Path Ahead

The preceding discussion introduced hyperparameter optimization, successive halv-
ing, and the standard and greedy k-fold cross validation methods, all of which are essential
foundation stones upon which the primary contributions of this paper will be built. In brief,
the following sections of this paper are dedicated to developing and rigorously evaluating
a new hyperparameter optimization algorithm that integrates greedy cross validation and
successive halving. Given the critical need among AI/ML practitioners for fast and effective
hyperparameter optimization methods, the primary goal of this new algorithm is to be
able to select ML models of the same quality as those selected by successive halving but to
do so much more quickly. Put differently, this research seeks to develop a greedy successive
halving algorithm that is equivalent to standard successive halving in terms of its ability to
select high-quality ML models, but which requires much less time than standard successive
halving to perform that ML model selection task. Since standard successive halving is a
very popular, state-of-the-art early stopping method for performing hyperparameter opti-
mization, a new algorithm that can be rigorously shown to outperform standard successive
halving would represent a noteworthy contribution to the AI/ML community. The balance
of this paper seeks to make just such a contribution.

2. Materials and Methods

This section begins by introducing the greedy successive halving algorithm, which
demonstrates how greedy cross validation can be integrated into the successive halving
process. Successive halving ordinarily relies on standard cross validation, which treats
ML model evaluation as an opaque “black box” process. The proposed greedy successive
halving algorithm, however, relies on greedy cross validation, thus allowing the algorithm
to pay attention to and benefit from the information that is generated while the ML model
evaluation process is still underway. The greedy successive halving algorithm leverages
this informational advantage to significantly increase the speed of the ML model selection
process without sacrificing the quality of the models that are ultimately chosen.

After introducing the greedy successive halving algorithm, this section next describes
the series of experiments that were conducted in order to compare the performance of
the proposed algorithm against that of successive halving with standard cross validation,
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both in terms of wall-clock time and in the quality of the final ML models chosen by
each algorithm. These experiments involve a variety of real-world datasets, a variety of
machine learning algorithms (including both multiple classifiers and multiple regressors),
differing numbers of folds for the cross-validation process, and differing sizes for the sets
of candidate models that are considered by the competing algorithms. The results of these
experiments—which reveal the overwhelming superiority of the greedy successive halving
algorithm—are subsequently presented in Section 3.

2.1. The Greedy Successive Halving Algorithm

By design, standard cross validation fully evaluates each candidate ML model from
start to finish and returns the model’s overall level of performance [16]. Standard cross
validation is a memoryless process insofar as it neither cares about nor pays attention to
how the performance of any candidate ML model compares to that of any other model.
In contrast, greedy cross validation maintains an estimate of every candidate model’s
level of performance and uses that information to prioritize the evaluation of the most
promising models. This means that when using greedy cross validation, the most promising
models will be the earliest to be completely evaluated during the overall model evaluation
process [8]. The proposed greedy successive halving algorithm capitalizes on this difference
between standard and greedy cross validation to achieve its superior performance.

As illustrated in Figure 2, both the number of candidate ML models and the number
of training cases that will be used during each iteration of the successive halving algorithm
are determined by exponential functions and can be easily calculated before the algorithm
begins evaluating any ML models. Since the number of models needed for each successive
halving iteration can be easily calculated in advance, the current successive halving iteration
can be terminated immediately as soon as the number of ML models needed for the next
iteration have been fully evaluated via greedy cross validation. Put differently, there is no
need to wait until every candidate model for the current iteration has been fully evaluated
before identifying the set of best-performing models that will be used in the next iteration.
Instead, by virtue of greedy cross validation’s innate prioritization of the most promising
ML models, any iteration of successive halving (except the final iteration) can be concluded
immediately as soon as greedy cross validation has fully evaluated a sufficient number of
models to satisfy the input requirements of the next iteration. This is the key insight that
endows greedy successive halving with its superior performance.

Successive halving—including greedy successive halving—is an iterative algorithm.
During the first iteration, successive halving considers the complete set of candidate ML
models but does so using a minimally sized random sample of the available training data.
By the time successive halving reaches the final iteration, it considers only the two most
promising candidate models but does so using all of the available training data. For the
current study, the maximum number of training cases to use per iteration (Nmax) was thus
set equal to the total number of available training cases, while the minimum number of
training cases to use per iteration (Nmin) was set equal to 6 ∗ k, with k being the number of
folds to use during the cross-validation process. Since 5 and 10 are the two most common
values of k used by AI/ML practitioners [17], setting Nmin = 6 ∗ k guaranteed that a
minimum of 6 ∗ 5 = 30 cases would be used to train and evaluate each candidate model
during the first iteration of the successive halving algorithm.

In successive halving, the amount by which the number of candidate models is reduced
from one iteration to the next and the amount by which the number of training cases is
increased from one iteration to the next both depend on exponential functions, which
in turn depend on the number of successive halving iterations. Prior to calculating the
parameters of the exponential functions, it is therefore necessary to calculate the number of
iterations that will be needed during the successive halving process. The total number of
iterations to perform (Niter) is a function of the minimum and maximum number of cases
per iteration and a halving factor (h), as shown in Equation (1). Each successive halving
iteration considers approximately 1/h of the models from the previous iteration. For the
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current study, the halving factor was set equal to 3, which matches the default value used
in scikit-learn’s implementation of the successive halving algorithm [15].

Niter =
⌊
logh(Nmax/Nmin)

⌋
+ 1 (1)

Once the number of successive halving iterations is known, the number of ML models
to use and the number of training cases to use for any iteration can be easily calculated
using exponential functions of the form y = a·ex·b. Specifically, for any iteration i (where
i = 0 for the first iteration), the number of ML models that are needed for the next iteration
(Nmodels) can be determined by Equation (2), while the number of training cases to use for
the current iteration (Ncases) can be determined by Equation (3).

Nmodels = n(M) ∗ e−(i+1)·bmodels

where :
M = the set of candidate models

n(M) = the cardinality of M
bmodels =

ln(2 / n(M))
−Niter+1

(2)

Ncases = Nmin ∗ ei·bcases

where :
bcases =

ln(Nmax / Nmin)
Niter−1

(3)

As soon as the number of training cases to use for the current iteration (Ncases) is
known (per Equation (3)), a random sample of Ncases training cases can be drawn from the
complete set of training data, which can then be randomly subdivided into k folds. Next,
Equation (2) can be used to calculate the number of candidate ML models (Nmodels) that
will be needed as input for the next iteration. If the current iteration also happens to be
the algorithm’s final iteration, then Nmodels will naturally be equal to 1, indicating that the
single, best-performing model is to be returned. Once the value of Nmodels is known, the
evaluation of the candidate models for the current iteration can begin.

It is at this point that the greedy successive halving algorithm diverges from the
standard successive halving algorithm. With standard successive halving, the next step
would be to completely evaluate the performance of every remaining candidate ML model
by using standard cross validation. After the overall performance of every remaining
candidate ML model has been identified, the standard successive halving algorithm would
select the Nmodels best-performing models, which would subsequently be advanced to the
next iteration [11]. Any models that did not perform sufficiently well to survive to the next
iteration would be discarded. Note that with standard successive halving, every remaining
candidate model must be fully evaluated before the algorithm can proceed to the next
iteration.

In contrast to standard successive halving, the greedy successive halving algorithm
does not require every remaining candidate ML model to be fully evaluated before it is
able to proceed to the next iteration. Instead, greedy successive halving is able to advance
to the next iteration as soon as it has fully evaluated just Nmodels of the remaining candidate
models. This key advantage is attributable to greedy successive halving’s use of greedy
cross validation, which automatically prioritizes the evaluation of the most promising ML
models. A complete description of the proposed greedy successive halving algorithm is
provided in Algorithm 1 below.
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Algorithm 1. ML model selection using greedy successive halving.

Input: M (set of candidate ML models), k (number of folds), D (training dataset),
h (halving factor)
Output: Best-performing ML model identified in M

Nmax ← n(D) (maximum # of training cases to use per iteration)
Nmin ← 6k (minimum # of training cases to use per iteration)
Niter ←

⌊
logh(Nmax/Nmin)

⌋
+ 1 (total # of halving iterations to perform)

bcases ← ln(Nmax/Nmin)
Niter−1 (scalar for computing # of training cases to use per iteration)

bmodels ←
ln(2/n(M))
−Niter+1 (scalar for computing # of best models to select per iteration)

for each i ∈ {0, 1, . . . , Niter − 1} do (for each halving iteration)
Mbest = ∅ (the set of best models selected during this iteration)
(determine the # of best models to retain after this iteration):
if i = Niter − 1 then

Nmodels ← 1
else

Nmodels ← min
(

n(M), round
(

n(M) ∗ e−(i+1)·bmodels

))
end if
Ncases ← round

(
Nmin ∗ ei·bcases

)
(# of training cases to use during this iteration)

D∗ ← random sample of Ncases training cases selected from D
split D∗ into k folds of approximately equal size, s.t.D∗ = {d1, d2, . . . , dk}
for each m ∈ M do (for each remaining candidate model)

train m using folds {d2, . . . , dk}
Pm ← performance of m evaluated using fold d1
Nm ← 1(number of folds evaluated for m)

while n(Mbest) < Nmodels do (while more best models remain to be selected)
m∗ ← best incompletely evaluated m ∈ M, per P
Nm∗ ← Nm∗ + 1
train m∗ using all folds dj ∈ D∗ where j 6= Nm∗

evaluate performance of m∗ using fold dNm∗

Pm∗ ← mean performance of m∗ for folds
{

d1, . . . , dNm∗

}
(if all folds have been evaluated for m∗, then add m∗ to the set of best models):
if Nm∗ = k then

Mbest ← m∗

end if
end while
M← Mbest (define the set of remaining candidate models)

end for
return the only remaining m ∈ M

2.2. Evaluative Experiments

Having presented and discussed the proposed greedy successive halving algorithm,
it is now possible to describe the extensive series of experiments that were conducted
in order to assess, quantify, and compare the performance of greedy successive halving
against that of standard successive halving. In total, 60 experiments were carried out to
rigorously evaluate the performance characteristics of the proposed greedy successive
halving algorithm under a variety of different conditions. These experiments involved
five different machine learning algorithms, three of which were classifiers (a Bernoulli
naïve Bayes classifier, a decision tree classifier, and a deep neural network classifier) and
two of which were regressors (a passive aggressive regressor and a Tweedie regressor).
The versions of these algorithms found in Python’s scikit-learn library were used in the
experiments to ensure replicability. These specific ML algorithms were chosen because of
their widely varying approaches to machine learning [18–21] and to provide insights into
the performance of greedy successive halving in scenarios involving both classification and
regression tasks. Four different real-world datasets were used in conjunction with these ML
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algorithms, with the Wine Recognition dataset [22] and Wisconsin Diagnostic Breast Cancer
dataset [23] serving as input for the classification algorithms and the California Housing
dataset [24] and Diabetes dataset [25] serving as input for the regression algorithms. These
datasets are all well-known among AI/ML practitioners and are freely available in the
Python scikit-learn library, thus ensuring that the results of the experiments could be easily
replicated. The characteristics of each of these datasets are provided in Table 1 below.

Table 1. Characteristics of datasets used in the evaluative experiments.

Dataset Instances Features Target

California Housing 20,640 8 Real

Diabetes 442 10 Real

Wine Recognition 178 13 Three Classes

Wisconsin Diagnostic Breast Cancer 569 29 Two Classes

Two possible values for the number of cross-validation folds (k) were used in the
experiments, with k ∈ {5, 10}. These values of k were adopted because they are the
most widely used among AI/ML practitioners when performing cross validation [17].
Additionally, three different values for the number of candidate ML models (n(M)) were
also used in the experiments, with n(M) ∈ {250, 500, 1000}. The set of candidate ML
models was randomly generated for each experiment, with care being taken to ensure that
each model’s hyperparameter settings were unique within the set. For the models involving
deep neural networks, both the algorithmic hyperparameters and the structure of the neural
networks (number of hidden layers, number of nodes per layer, etc.) were allowed to vary
from model to model. In summary, then, 12 different experimental conditions were used for
each ML algorithm, yielding an overall total of 60 unique experimental conditions (5 ML
algorithms * 2 datasets per algorithm * 2 values of k * 3 different sizes for M = 60 total
experiments). Each of these experiments was repeated 30 times in order to ensure that the
distributions of the resulting performance metrics would be approximately Gaussian, per
the Central Limit Theorem [26].

As noted above, the overall goal of the experiments was to compare the performance
of the proposed greedy successive halving algorithm against that of the standard successive
halving algorithm under a wide variety of different conditions. With this goal in mind,
two different performance metrics were generated for each experiment: (1) the wall-
clock time required by each algorithm to choose a final ML model from among the set
of candidate models, and (2) the quality of the final model chosen by each algorithm.
The first of these performance metrics allowed for an assessment of how quickly the
competing algorithms completed the ML model selection task, while the second of these
performance metrics allowed the quality of the final model chosen by the greedy successive
algorithm to be compared against the quality of the final model chosen by the standard
successive halving algorithm. If the greedy successive halving algorithm could be shown
to select ML models of statistically comparable quality to those selected by the standard
successive halving algorithm while requiring less wall-clock time to do so, then it could
be reasonably concluded that the greedy successive halving algorithm is superior to the
standard successive halving algorithm.

Among the classifiers, the performance of the final ML model chosen by each of the
competing successive halving algorithms was measured in terms of classification accuracy,
while among the regressors, the performance of the final model chosen by the competing
successive halving algorithms was measured in terms of the mean absolute error (MAE)
of the model’s predictions. For each experiment, a naïve, exhaustive search of all of the
experiment’s candidate models was first performed using standard k-fold cross validation
without successive halving. Since an exhaustive search evaluates every possible candidate
model using the complete set of training data for a given experiment, the results of the
exhaustive search established a baseline wall-clock processing time for each experiment, as
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well as a baseline performance value for the ground truth optimal model among the set of
candidate models considered during the experiment. The mean performance values for the
ground truth optimal models identified during the experiments are provided in Table 2
below. Note that the values reported for the California Housing and Diabetes datasets
indicate the average MAE for the corresponding experiments’ ground truth optimal models,
while the values reported for the Wine Recognition and Wisconsin Diagnostic Breast Cancer
datasets indicate the average classification accuracy for the corresponding experiments’
ground truth optimal models. To better contextualize the MAE values reported in the table,
it is also worthwhile to note that the raw values for the target variable in the California
Housing dataset ranged from 0.15 to 5.0, while the raw values for the target variable in the
Diabetes dataset ranged from 25 to 346.

Table 2. Mean performance of ground truth optimal models for each experimental condition, as
identified by an exhaustive search.

Dataset ML Algorithm
250 Candidate

Models
500 Candidate

Models
1000 Candidate

Models
k = 5 k = 10 k = 5 k = 10 k = 5 k = 10

California Housing † Passive Aggressive 0.573 0.570 0.555 0.558 0.548 0.548
Tweedie 0.588 0.584 0.574 0.571 0.571 0.568

Diabetes † Passive Aggressive 44.482 44.345 44.380 44.253 44.320 44.218
Tweedie 44.016 43.982 43.988 43.954 43.978 43.940

Wine Recognition ‡
Bernoulli Naïve Bayes 0.914 0.920 0.917 0.923 0.918 0.924

Decision Tree 0.923 0.935 0.929 0.939 0.934 0.946
Deep Neural Network 0.979 0.983 0.980 0.985 0.982 0.986

Wisconsin
Diagnostic Breast

Cancer ‡

Bernoulli Naïve Bayes 0.940 0.940 0.940 0.942 0.941 0.942
Decision Tree 0.953 0.955 0.955 0.958 0.957 0.958

Deep Neural Network 0.982 0.982 0.983 0.983 0.984 0.983
† Values indicate the average MAE for the corresponding experiments’ ground truth optimal models. ‡ Values
indicate the average classification accuracy for the corresponding experiments’ ground truth optimal models.

After all of the experiments were complete, both the performance of the final models
chosen by each variant of the successive halving algorithm and the wall-clock time required
by each variant were standardized as percentages of their corresponding baseline values.
For example, a standardized performance value of 1.02 for a regressor model would indicate
that the mean absolute error for the chosen model was 2% greater than the ground truth
optimal model, while a standardized performance value of 0.98 for a classifier model
would indicate that the classification accuracy of the chosen model was 2% less than the
ground truth optimal model. Similarly, a standardized time of 0.30 would indicate that a
successive halving algorithm required only 30% as much wall-clock time as a corresponding
exhaustive search of the same set of candidate models. Using this approach allowed the
performance of the competing algorithms to be compared across experimental conditions in
a statistically valid way. Finally, the standardized wall-clock times and model performance
values for the standard and greedy successive halving algorithms were compared against
each other using Welch’s t-tests [27]. Unlike most other t-tests, Welch’s t-tests allow the
independent samples being compared to have unequal variances. Since there was no ex
ante reason to expect the distributional variances of the performance metrics generated by
each competing algorithm to be equal, Welch’s t-tests provided an appropriate statistical
foundation for comparing the experimental results.

The experiments themselves were run sequentially using a fixed hardware configura-
tion on the Google Cloud Platform [28]. Since the hardware resources used to conduct the
experiments were identical for each experimental condition, any statistically significant
differences in wall-clock times or model performance values would be attributable solely to
differences between the standard successive halving algorithm and the greedy successive
halving algorithm. The results of the experiments are presented in the following section.
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3. Results

As described in the previous section, the experiments carried out in this study were
designed to compare the performance of the proposed greedy successive halving algorithm
against that of the standard successive halving algorithm under a variety of different condi-
tions. Comparing these algorithms required the consideration of two distinct performance
metrics for each of the study’s 60 different experimental conditions: (1) the wall-clock time
required by each algorithm to choose a final ML model from among the set of candidate
models, and (2) the quality of the final model chosen by each algorithm. If the results of
the experiments showed that the greedy successive halving algorithm could select ML
models of the same quality as those selected by the standard successive halving algorithm
while requiring less wall-clock time to do so, then it would be reasonable to conclude
that the greedy successive halving algorithm is generally superior to the standard suc-
cessive halving algorithm. Accordingly, the performance of the competing algorithms in
terms of both wall-clock time and the quality of the chosen ML models is presented in the
following subsections.

3.1. Experiment Results: Wall-Clock Time

A necessary first step in comparing the performance of greedy successive halving
versus that of standard successive halving was to assess how quickly the competing
algorithms were able to complete the task of selecting a final ML model from among a set
of candidate models. Tables 3–5 below summarize the average wall-clock time required
by each algorithm to complete the ML model selection task for sets of 250, 500, and
1000 candidate models, respectively. As noted in Section 2, each value reported in these
tables has been standardized as a proportion of the corresponding wall-clock time required
to complete a naïve, exhaustive search, and reflects the mean of 30 different trials for the
specified experimental condition. The probability values reported in the tables originate
from Welch’s t-tests that directly compare the standardized wall-clock times required by
the competing algorithms under identical experimental conditions.

Table 3. Mean standardized wall-clock times for evaluation of 250 candidate models, relative to an
exhaustive search.

Dataset ML Algorithm
Greedy Successive

Halving
Standard Successive

Halving
k = 5 k = 10 k = 5 k = 10

California
Housing

Passive Aggressive 0.041 *** 0.041 *** 0.069 0.077
Tweedie 0.112 *** 0.093 *** 0.182 0.167

Diabetes
Passive Aggressive 0.242 *** 0.128 *** 0.678 0.640

Tweedie 0.341 *** 0.156 *** 1.056 0.893

Wine
Recognition

Bernoulli Naïve
Bayes 0.260 *** 0.187 *** 0.957 0.972

Decision Tree 0.251 *** 0.166 *** 0.839 0.857
Deep Neural

Network 0.120 *** 0.103 *** 0.470 0.551

Wisconsin
Diagnostic

Breast Cancer

Bernoulli Naïve
Bayes 0.359 *** 0.284 *** 0.891 0.925

Decision Tree 0.163 *** 0.120 *** 0.389 0.386
Deep Neural

Network 0.102 *** 0.090 *** 0.260 0.292

*** p < 0.001 for a Welch’s t-test comparing wall-clock times for the greedy and standard successive halving algorithms.
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Table 4. Mean standardized wall-clock times for evaluation of 500 candidate models, relative to an
exhaustive search.

Dataset
ML

Algorithm
Greedy Successive Halving Standard Successive Halving

k = 5 k = 10 k = 5 k = 10

California
Housing

Passive
Aggressive 0.034 *** 0.034 *** 0.057 0.063

Tweedie 0.093 *** 0.074 *** 0.157 0.141

Diabetes
Passive

Aggressive 0.228 *** 0.121 *** 0.659 0.634

Tweedie 0.315 *** 0.152 *** 1.028 0.890

Wine
Recognition

Bernoulli
Naïve Bayes 0.259 *** 0.178 *** 0.971 0.970

Decision Tree 0.220 *** 0.164 *** 0.821 0.845
Deep Neural

Network 0.111 *** 0.079 *** 0.466 0.473

Wisconsin
Diagnostic

Breast Cancer

Bernoulli
Naïve Bayes 0.335 *** 0.259 *** 0.863 0.892

Decision Tree 0.149 *** 0.113 *** 0.374 0.372
Deep Neural

Network 0.091 *** 0.063 *** 0.249 0.231

*** p < 0.001 for a Welch’s t-test comparing wall-clock times for the greedy and standard successive halving algorithms.

Table 5. Mean standardized wall-clock times for evaluation of 1000 candidate models, relative to an
exhaustive search.

Dataset
ML

Algorithm
Greedy Successive Halving Standard Successive Halving

k = 5 k = 10 k = 5 k = 10

California
Housing

Passive
Aggressive 0.030 *** 0.030 *** 0.050 0.056

Tweedie 0.082 *** 0.075 *** 0.142 0.147

Diabetes
Passive

Aggressive 0.227 *** 0.130 *** 0.638 0.625

Tweedie 0.297 *** 0.151 *** 1.004 0.882

Wine
Recognition

Bernoulli
Naïve Bayes 0.250 *** 0.175 *** 0.953 0.962

Decision Tree 0.224 *** 0.166 *** 0.834 0.841
Deep Neural

Network 0.106 *** 0.084 *** 0.467 0.551

Wisconsin
Diagnostic

Breast Cancer

Bernoulli
Naïve Bayes 0.322 *** 0.250 *** 0.852 0.874

Decision Tree 0.145 *** 0.107 *** 0.357 0.354
Deep Neural

Network 0.082 *** 0.068 *** 0.241 0.272

*** p < 0.001 for a Welch’s t-test comparing wall-clock times for the greedy and standard successive halving algorithms.

As shown above in Tables 3–5, the greedy successive halving algorithm was consis-
tently able to complete the ML model selection task much more quickly than the standard
successive algorithm, regardless of the dataset that was used in the experiment, the type
of machine learning algorithm, the number of candidate models being evaluated, or the
number of folds used for cross validation. Put differently, the results reported in Tables 3–5
indicate that greedy successive halving required less wall-clock time to complete the ML
model selection task than standard success halving in all 60 of the experimental conditions
considered in this study, with the superior performance of greedy successive halving being
statistically significant at the p < 0.001 level in every case. The evidence obtained from the
experiments thus strongly suggests that greedy successive halving will be significantly
faster than standard successive halving when performing hyperparameter optimization
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under otherwise identical conditions. The comparative overall average wall-clock times re-
quired by the competing successive halving algorithms to complete the ML model selection
task for varying numbers of candidate models and folds is illustrated in Figure 6 below.
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3.2. Experiment Results: Quality of Chosen Models

Although assessing how quickly the competing algorithms were able to complete the
hyperparameter optimization process was necessary, doing so was not by itself sufficient to
establish the superiority of the greedy successive halving algorithm. Instead, it was also
necessary to compare the quality of the final ML models chosen by the greedy successive
algorithm under varying experimental conditions against the quality of the final models
chosen by the standard successive halving algorithm under identical conditions. Only if
greedy successive halving could be shown to select final ML models of equivalent quality
to those selected by standard successive halving—while also being faster to select those
models—could it be reasonably concluded that the greedy successive halving algorithm was
generally superior to the standard successive halving algorithm. Accordingly, Tables 4–6
below summarize the average quality of the final ML models chosen by the competing
successive halving algorithms for sets of 250, 500, and 1000 candidate models, respectively.

As noted in Section 2, each value reported in Tables 6–8 has been standardized relative
to the quality of the ground truth optimal model for each experimental condition, as
identified by means of an exhaustive search. For experiments involving a classification
task (i.e., those experiments that relied on the Bernoulli naïve Bayes, decision tree, or deep
neural network classifiers), the values in the tables represent the average classification
accuracy of the final ML models chosen by each algorithm, relative to the classification
accuracy of the ground truth optimal model within the corresponding set of candidate
models. For experiments involving a regression task (i.e., those experiments that relied on
the passive aggressive or Tweedie regressors), the values in the tables represent the average
mean absolute error (MAE) of the final ML models chosen by each algorithm, relative to
the MAE of the ground truth optimal model within the corresponding set of candidate
models. As with the wall-clock times presented earlier in this section, the values reported
in the tables below reflect the mean of 30 different trials for each experimental condition,
with the corresponding probability values originating from Welch’s t-tests that directly
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compared the quality of the final ML models chosen by the competing algorithms under
identical experimental conditions.

Table 6. Mean standardized quality of final ML models chosen from a set of 250 candidate models,
relative to ground truth optimal model.

Dataset
ML

Algorithm
Greedy Successive Halving Standard Successive Halving

k = 5 k = 10 k = 5 k = 10

California
Housing

Passive
Aggressive 1.021 1.031 1.010 1.007

Tweedie 1.012 1.013 1.002 1.000

Diabetes
Passive

Aggressive 1.034 1.097 1.029 1.039

Tweedie 1.054 1.040 1.028 1.027

Wine
Recognition

Bernoulli
Naïve Bayes 0.968 0.979 0.974 0.984

Decision Tree 0.908 0.944 0.903 0.939
Deep Neural

Network 0.963 0.987 0.974 0.985

Wisconsin
Diagnostic

Breast Cancer

Bernoulli
Naïve Bayes 0.993 0.993 0.993 0.994

Decision Tree 0.979 0.978 0.983 0.979
Deep Neural

Network 0.989 0.992 0.989 0.994

Table 7. Mean standardized quality of final ML models chosen from a set of 500 candidate models,
relative to ground truth optimal model.

Dataset
ML

Algorithm
Greedy Successive Halving Standard Successive Halving

k = 5 k = 10 k = 5 k = 10

California
Housing

Passive
Aggressive 1.023 1.016 1.010 1.008

Tweedie 1.020 1.018 1.004 1.002

Diabetes
Passive

Aggressive 1.049 1.068 1.030 1.039

Tweedie 1.054 1.035 1.031 1.025

Wine
Recognition

Bernoulli
Naïve Bayes 0.961 0.971 0.974 0.977

Decision Tree 0.912 0.936 0.926 0.936
Deep Neural

Network 0.968 0.983 0.973 0.983

Wisconsin
Diagnostic

Breast Cancer

Bernoulli
Naïve Bayes 0.992 0.992 0.994 0.993

Decision Tree 0.974 0.975 0.974 0.977
Deep Neural

Network 0.989 0.991 0.988 0.993

As shown in Tables 6–8, the greedy successive halving algorithm chose final ML
models whose quality was statistically indistinguishable from the final models chosen by
the standard successive algorithm in 59 out of the 60 different experimental conditions con-
sidered in the current study. Put differently, the results reported in Tables 6–8 indicate that
the average quality of the final ML models chosen by the greedy and standard successive
halving algorithms is statistically identical approximately 98.3% of the time, regardless
of the dataset, the type of machine learning algorithm, the number of candidate models
being evaluated, or the number of folds used for cross validation. The only exception to
the algorithms’ otherwise statistically identical ML model selection capabilities was the
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experimental condition in which a decision tree was used in conjunction with 1000 different
candidate models and 10 cross-validation folds to classify cases for the Wisconsin Diagnos-
tic Breast Cancer dataset. In this rare exception, the standard successive halving algorithm
chose final ML models whose classification accuracy was, on average, 0.5% closer to the
classification accuracy of the ground truth optimal model than the final models chosen by
the greedy successive halving algorithm, with this difference being statistically significant
at the p < 0.01 level. In all other cases, greedy successive halving was observed to perform
identically with standard successive halving in terms of its ability to select high-performing
ML models.

Table 8. Mean standardized quality of final ML models chosen from a set of 1000 candidate models,
relative to ground truth optimal model.

Dataset
ML

Algorithm
Greedy Successive Halving Standard Successive Halving

k = 5 k = 10 k = 5 k = 10

California
Housing

Passive
Aggressive 1.021 1.017 1.020 1.007

Tweedie 1.025 1.010 1.008 1.002

Diabetes
Passive

Aggressive 1.050 1.099 1.031 1.042

Tweedie 1.054 1.038 1.030 1.026

Wine
Recognition

Bernoulli
Naïve Bayes 0.961 0.968 0.974 0.976

Decision Tree 0.879 0.915 0.903 0.925
Deep Neural

Network 0.968 0.983 0.975 0.979

Wisconsin
Diagnostic

Breast Cancer

Bernoulli
Naïve Bayes 0.992 0.991 0.993 0.992

Decision Tree 0.972 0.972 0.974 0.977 **
Deep Neural

Network 0.986 0.990 0.988 0.992

** p < 0.01, for a Welch’s t-test comparing the quality of the final ML models chosen by the greedy and standard
successive halving algorithms.

Finally, it is worth noting that neither the standard successive halving algorithm nor
the greedy successive halving algorithm will choose the ground truth optimal model on
average. Among the 24 experimental conditions involving regression problems, both the
greedy and standard successive halving algorithms were observed to select final ML models
whose mean absolute errors were slightly higher on average than the true optimal ML
model within the set of available candidate models. Similarly, among the 36 experimental
conditions involving classification problems, both the greedy and standard successive
halving algorithms were observed to select final ML models whose classification accuracies
were slightly lower on average than the true optimal ML model within the set of available
candidate models. For both greedy and standard successive halving, then, the choice to use
a successive halving algorithm to perform hyperparameter optimization rather than relying
on an exhaustive search represents a tradeoff in which substantial gains in search speed are
realized in exchange for an outcome that will, on average, be slightly sub-optimal.

4. Discussion
4.1. Summary and Discussion of Findings

The results of the experiments described in the previous section indicate (1) that the
greedy successive halving algorithm was significantly faster than the standard successive
halving algorithm in 100% of the experimental conditions considered in the study; and
(2) that the greedy successive halving algorithm was able to select final ML models whose
quality was statistically identical to the models chosen by standard successive halving in
approximately 98.3% of those conditions. Since greedy successive halving was observed
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to always be much faster than standard successive halving, and since greedy successive
halving almost always chose final models of the same quality as standard successive
halving, it can be reasonably concluded that the proposed greedy successive halving
algorithm is generally superior to the standard successive halving algorithm in terms of its
ability to perform hyperparameter optimization for AI/ML scenarios.

While the results reported in the previous section provide insights into the compara-
tive performance of greedy successive halving in specific scenarios, some consideration
and discussion of the proposed algorithm’s average level of performance in comparison to
standard successive halving may be instructive. To this end, across all 60 of the experimen-
tal conditions evaluated in the study, greedy successive halving was, on average, 3.59 times
faster than standard successive halving when performing identical ML model selection
tasks, with greedy successive halving’s advantage in speed ranging from a minimum of
2.65 times faster to a maximum of 5.42 times faster than standard successive halving. This
remarkable difference in the speed with which greedy successive halving can complete
the hyperparameter optimization process has very significant implications for AI/ML
practitioners. For example, given a desire to complete the hyperparameter optimization
process as quickly and inexpensively as possible, and assuming the use of identical hard-
ware resources, AI/ML practitioners relying on greedy successive halving would be able to
evaluate the same number of candidate ML models 3.59 times more quickly than if they had
chosen to use standard successive halving to perform the same task. Conversely, AI/ML
researchers working within the constraints of a computational budget could evaluate a
much larger set of candidate ML models during a fixed timeframe than would be possible
with standard successive halving, thus markedly improving the chances of identifying a
superior final model.

4.2. Limitations and Opportunities for Future Research

Although careful and systematic efforts were taken in this study to investigate the
performance of the proposed greedy successive halving algorithm in comparison to that of
the standard successive halving algorithm, there nevertheless remain several limitations to
this work that merit acknowledgement. First, the experiments described herein relied on
four different datasets, two of which involved classification problems and two of which
involved regression problems. These datasets are heterogeneous in terms of their number of
cases and their numbers of independent and dependent variables, and are publicly available
and easily accessible to aid in the reproducibility of the study’s findings. Despite these
advantages and the observed consistency of the results of the experiments across datasets,
it is possible that the greedy successive halving algorithm would perform differently if
used with other datasets. Future research should thus subject the greedy successive halving
algorithm to other datasets with varying characteristics in order to ascertain the extent to
which greedy successive halving performs consistently across a wide variety of datasets.

In addition to relying on just four different datasets, the findings of the experiments
reported herein are also limited insofar as they relied on only five different machine learning
algorithms. Although care was taken to include three different ML classifier algorithms
and two different ML regressors in the study, and although the ML algorithms used in the
experiments were chosen because of their widely varying approaches to machine learning,
there remain dozens of other ML algorithms that were not included in this investigation.
Future research in this area should therefore endeavor to evaluate the performance of
greedy successive halving when used as a basis for rapid hyperparameter optimization in
AI/ML scenarios involving other popular machine learning algorithms.

Next, the experiments described in the current study evaluated the comparative
performance of the greedy successive halving algorithm at selecting a high-performing ML
model from sets of 250, 500, and 1000 different candidate models. There is some evidence
in the results from the experiments that suggests that the relative speed with which the
greedy successive halving algorithm is able to complete the ML model selection task tends
to improve in comparison to an exhaustive search as the number of candidate models
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increases. The nature of the relationship between the cardinality of the set of candidate
models and the advantage in speed that the greedy successive halving algorithm has over
an exhaustive search was not formally studied in this paper, and this represents another
opportunity for future research.

Finally, the standard successive halving algorithm, the proposed greedy successive
halving algorithm, and the exhaustive search algorithm against which the competing
successive halving algorithms were compared were all implemented in this study as
serial processes. Although doing so would not be trivial, it would certainly be feasible
to develop versions of the greedy successive halving algorithm that take advantage of
parallel processing. It is currently unknown how well the performance of a parallel
implementation of the greedy successive halving algorithm would compare against the
performance of a parallel implementation of the standard successive halving algorithm.
Developing and evaluating the performance of a parallel version of the greedy successive
halving algorithm is thus a potentially very fruitful opportunity for future research on
state-of-the-art hyperparameter optimization.

4.3. Concluding Remarks

This paper demonstrated that greedy cross validation can be seamlessly integrated
into the popular successive halving method to create a greedy successive halving algorithm
that can perform very rapid hyperparameter optimization for artificial intelligence and
machine learning scenarios. The performance of the proposed greedy successive halving
algorithm was rigorously compared against the performance of the standard successive
halving algorithm under 60 different experimental conditions, with these experiments
involving four different real-world datasets, five different machine learning algorithms
(including three distinct classifier algorithms and two distinct regressor algorithms), sets of
candidate ML models of three different sizes, and two different values for the number of
folds used during the cross-validation process. The results of the experiments showed that
on average, the proposed greedy successive halving algorithm is more than 3.59 times faster
than the standard successive halving algorithm at completing identical hyperparameter
optimization tasks. Furthermore, the results showed that the quality of the final ML models
chosen by the greedy successive halving algorithm are statistically identical to the quality
of the final ML models chosen by the standard successive halving algorithm approximately
98.3% of the time. Since the proposed greedy successive halving algorithm is much, much
faster than the standard successive halving algorithm while almost always being able to
select final ML models of equal quality, AI and ML researchers would be well-advised to
consider using greedy successive halving rather than standard successive halving when
performing hyperparameter optimization.

Despite the overwhelming evidence in favor of the superiority of the greedy successive
halving algorithm that emerged from the experiments described in this study, much remains
to be learned. For example, the current paper considered the performance of greedy
successive halving only in the context of hyperparameter optimization for AI/ML-related
use cases. It seems reasonable to expect, however, that greedy successive halving could
be readily adapted for use in many other scenarios to which computational optimization
techniques may be beneficially applied. Among these alternate uses, one particularly
noteworthy area of inquiry would be to recast greedy successive halving for use in solving
a variety of different bandit problems or other reinforcement learning problems that involve
an exploration/exploitation dilemma. These and many other possibilities have yet to be
explored, and, at least for now, remain as tantalizing opportunities for future research.
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