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Abstract 
This paper introduces a greedy method of 

performing k-fold cross validation and shows how the 
proposed greedy method can be used to rapidly identify 
optimal or near-optimal machine learning (ML) models. 
Although many methods have been proposed that apply 
metaheuristic and other search methods to the 
hyperparameter space as a means of accelerating ML 
model selection, the cross-validation process itself has 
been overlooked as a means of rapidly identifying 
optimal ML models. The current study remedies this 
oversight by describing a simple, greedy cross 
validation algorithm and demonstrating that even in its 
simplest form, the greedy cross validation method can 
vastly reduce the average time required to identify an 
optimal or near-optimal ML model within a large set of 
candidate models. This substantially reduced search 
time is shown to hold across a variety of different ML 
algorithms and real-world datasets. 

1. Introduction  

Organizational development and adoption of 
artificial intelligence (AI) and machine learning (ML) 
technologies has exploded in popularity in recent years. 
One of the most significant drivers of this rapid rise of 
AI and ML has been cloud computing, through which 
the vast computational resources required to train and 
evaluate complex machine learning models have 
become widely available on an elastic, as-needed basis 
[1]. Despite the widespread availability of cloud-based 
computational resources, both the execution time 
required to train today’s complex, state-of-the-art ML 
models and the cloud computing costs associated with 
training those models remain major obstacles in many 
real-world scientific, governmental, and commercial 
use cases [2]. Further, this problem is often made 
exponentially worse by the need to perform 
hyperparameter optimization, wherein a large number of 
candidate models with varying hyperparameter settings 
are trained and evaluated in an effort to find the best-
performing model [3, 4]. Tools and methods aimed at 
reducing the computational workload and associated 

monetary costs of arriving at a final, best-performing 
ML model are therefore highly desirable. 

Since evaluating many ML models can be very 
time-consuming and expensive, many researchers have 
considered the important problem of how to find an 
optimal or near-optimal ML model among the set of all 
possible models as quickly as possible. Unfortunately, 
many of the hyperparameters involved in ML model 
design and training are real-valued, which implies that 
there is often an infinite number of possible models that 
theoretically could be evaluated for a particular ML 
scenario. Recognizing that this situation clearly makes a 
brute-force model search infeasible, a considerable 
variety of approaches have been proposed for searching 
a finite subset of the infinite model space. The simplest 
and most common of these methods involve performing 
a grid search or a random search, with the latter 
approach serving as a natural baseline for inter-method 
performance comparisons [3]. Several more 
sophisticated guided search methods have also been 
proposed, including Bayesian methods [5], population-
based approaches such as evolutionary optimization [6], 
early stopping methods [7], and hypergradient 
optimization [8, 9], among others. Despite the different 
rules and theories upon which these guided search 
methods are based, all share a common general strategy: 
to identify relationships between hyperparameter values 
and a performance metric, and then use that knowledge 
to evaluate models located within promising regions of 
the search space. This general strategy for performing 
hyperparameter optimization is illustrated in Figure 1. 

With respect to the general approach to 
hyperparameter optimization, the factors that 
distinguish one guided search method from another are 
(1) variations in how tuples of hyperparameters are 
selected, (2) the stopping conditions that are used, and 
(3) the information about the relationships between the 
hyperparameters and the performance metric that is used 
to guide the search process. Together, these three factors 
are respectively represented by items A, C, and D in 
Figure 1. What remains, then, is item B, which 
represents the process of training and evaluating one or 
more candidate models, with each candidate model 
corresponding to a tuple of hyperparameter values from 
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item A. Evaluating the performance of each candidate 
model can be accomplished via any statistically 
defensible process, regardless of the specific guided 
search method being used. In practice, the task of 
evaluating an ML model’s performance is most 

commonly carried out using k-fold cross validation [10], 
wherein the data are randomly subdivided into k folds, 
with each fold being iteratively used as a validation set 
for a model that has been trained using the remaining  
k - 1 folds [11]. 

 
Figure 1. The general approach to hyperparameter optimization used by guided search methods. 

 
In contrast to all existing guided search methods for 

hyperparameter optimization, this study takes a 
completely different approach by considering the ML 
model training and evaluation process as a means of 
accelerating the search for an optimal model. Put 
differently, rather than trying to find promising regions 
within the hyperparameter space, this study instead 
focuses on the process of measuring model performance 
as a way of reducing the time and costs associated with 
evaluating many candidate ML models. In the context 
of Figure 1, the current study is thus primarily 
concerned with item B, which, as noted in the discussion 
above, has been generally overlooked as a means of 
performing rapid hyperparameter optimization. Given 
that ML model performance is most commonly carried 
out using k-fold cross validation, this paper explicitly 
seeks to pioneer a new approach to hyperparameter 
optimization by inquiring into the following general re-
search question: 

Research Question: When performing hyperparameter 
optimization with k-fold cross vali-dation, is it possible 
to improve the average time required to find the best-
performing model by taking a greedy approach to the k-
fold process itself? 

The balance of this paper is organized as follows: 
Section 2 provides a review of the related literature by 
describing current methods of performing 
hyperparameter optimization, as well as the standard 
approach to k-fold cross validation. The greedy k-fold 
cross validation algorithm that forms the core of the 
current study is introduced in Section 3, along with a 
discussion of the algorithm’s properties. Section 4 
describes a series of experiments that were undertaken 
to evaluate the performance of the greedy k-fold method 
relative to the baseline standard k-fold method, with the 
experiments comparing the ML model search 
performance of the greedy and standard methods across 
a variety of different ML algorithms and real-world 
datasets. The outcomes of the evaluative experiments 

are presented and discussed in Section 5, with the results 
indicating that greedy k-fold cross validation can vastly 
reduce the average time required to identify the best-
performing ML model within a set of candidate models. 
The paper concludes with Section 6, which provides a 
brief summary, describes the limitations of the work, 
and offers a few remarks about future research. 

2. Related work 

2.1  Hyperparameter optimization & model 
selection 

When developing ML-based solutions, it is 
standard practice to evaluate a variety of different ML 
models with a view toward identifying the best model 
possible given the project’s temporal or financial 
constraints (which collectively define the ML project’s 
computation budget) [12]. The term model as it is being 
used here refers to a combination of an ML algorithm 
and the specific values that have been chosen for the 
algorithm’s tunable or definable parameters. These 
parameters can be structural – for example, the number 
of hidden layers or the number of nodes per layer in a 
neural network – or they can be algorithmic parameters 
that control the learning process, such as the mini-batch 
size or the learning rate. Collectively, these structural 
and algorithmic parameters are referred to as the 
model’s hyperparameters, and the task of searching for 
the best possible combination of hyperparameter 
settings for a particular problem is referred to as 
hyperparameter optimization [3]. Evaluating many 
combinations of ML algorithms and hyperparameter 
settings (i.e., evaluating many models) is typically 
necessary because research has shown that no single ML 
algorithm or set of hyperparameter settings yields 
optimal results for all possible datasets or problem 
domains [13, 14]. Indeed, a particular combination of an 
ML algorithm and a set of hyperparameter settings may 
perform very well in one scenario while performing 
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very poorly in another scenario. Since every ML model 
has hyperparameters, and since identifying the best 
possible model given the project’s computational 
budget is commonly of paramount importance, 
hyperparameter optimization has become an 
indispensable step in the broader process of developing 
an ML-based solution. 

2.2  Current hyperparameter optimization 
methods 

2.2.1  Grid search. Grid search is one of the most 
widely used and well-established methods of 
performing hyperparameter optimization among 
machine learning practitioners [15]. In a grid search, the 
ML practitioner first specifies a finite set of values for 
each hyperparameter, after which the grid search 
algorithm performs an exhaustive search by evaluating 
the Cartesian product of these sets of hyperparameter 
values [3]. As with all hyperparameter optimization 
methods, the ML practitioner must instruct the grid 
search algorithm to use a specific performance metric 
when evaluating a set of candidate models, with overall 
model performance typically being determined via k-
fold cross validation [10]. 
 
2.2.2  Random search. Rather than iterating over the 
Cartesian product of all of the sets of hyperparameter 
values defined by the ML practitioner, a random search 
proceeds by evaluating ML models whose 
hyperparameter values have been chosen randomly. As 
with a grid search, the random search method can be 
readily applied to discrete, continuous, or mixed 
hyperparameter spaces. It is common practice when 
conducting a random search to establish a 
computational budget for the search process in which 
the search for the best-performing model continues until 
a certain number of models have been evaluated or a 
certain amount of time has elapsed [3].  

There are several reasons why the random search 
method serves as an excellent baseline against which to 
compare the performance of other hyperparameter 
optimization methods. First, the random search method 
does not make any assumptions about the specific ML 
problem domain or hyperparameter space in which it is 
operating. Similarly, the random search method does 
not make or rely on any assumptions about the specific 
ML algorithm whose hyperparameters it is attempting 
to optimize. Lastly, given a sufficient computational 
budget, a random search will eventually identify a 
model in the hyperparameter space whose distance from 
the globally optimal model is within any arbitrarily 
chosen degree of precision. Since random search has 
been shown to outperform many sophisticated search 
algorithms in scenarios involving a fixed computational 

budget and no prior knowledge of the hyperparameter 
space, using the random search performance as a 
comparative baseline is critical when evaluating the new 
metaheuristic search algorithms [16]. 
 
2.2.3 Bayesian optimization. In the context of 
hyperparameter optimization, Bayesian optimization is 
an iterative method that relies on Bayes’s Theorem to 
guide the hyperparameter search process [17]. This 
method works via a combination of two primary 
elements: (1) a probabilistic surrogate model, and (2) an 
acquisition function that is based on the surrogate model 
[3]. During each iteration, the surrogate model is first 
updated using the actual observations about the 
relationship between the hyperparameters and the 
performance metric that have thus far been obtained, 
yielding a posterior distribution. The acquisition 
function is then maximized to identify the most 
promising tuple of hyperparameter values to evaluate 
next. A candidate model that uses the most promising 
tuple of hyperparameter values is then evaluated in the 
actual search space, with the results being used to update 
the surrogate model for the next iteration. This process 
repeats until a stopping condition is met, such as the 
exhaustion of a computational budget or a sufficiently 
small difference in candidate model performance from 
one iteration to the next. 
 
2.2.4 Evolutionary optimization. As the name 
suggests, evolutionary optimization is an iterative 
method of performing hyperparameter optimization that 
relies on principles adopted from the biological process 
of evolution, such as mutation, recombination, 
adaptation to the environment, and survival of the fittest 
[18]. The evolutionary optimization process begins by 
creating a population consisting of a reasonably large 
number of randomly generated hyperparameter con-
figurations. Next, the performance of each of these 
members of the population is evaluated in light of the 
data and the chosen ML algorithm, typically by means 
of k-fold cross validation. The tuples of hyperparameter 
values are then ranked according to their observed levels 
of performance. Next, the worst-performing members of 
the population are discarded and replaced by new 
members, with the hyperparameter values for the new 
members being generated by means of mutation or 
recombination of the hyperparameter values of the best-
performing members of the population. Finally, the 
performance of each of the newly generated members is 
evaluated, and the population is re-ranked. These tasks 
are repeated until a stopping condition is met, such as 
the exhaustion of a computational budget or a 
sufficiently small difference in the performance of the 
best-performing candidate model from one iteration to 
the next. 
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2.2.5 Early stopping optimization. Early stopping 
optimization is an approach to hyperparameter 
optimization that relies on a strategy of pruning many 
unpromising hyperparameter configurations as quickly 
as possible, thus allowing a steadily increasing 
proportion of the available computational budget to be 
directed at evaluating more promising hyperparameter 
configurations in greater detail. Several variants of the 
early stopping method have been proposed in recent 
years, notably including successive halving [19, 20], 
asynchronous successive halving [4], and Hyperband 
[7]. Beginning with a fixed computational budget and a 
large, randomly generated set of candidate models, the 
early stopping methods first perform a quick, shallow 
evaluation of each candidate model. Next, the worst-
performing models are discarded (i.e., any further 
consideration of the worst-performing models is 
stopped early), and a larger proportion of the 
computational budget is allocated toward evaluating the 
remaining candidate models in greater detail. This 
process is repeated until only a single candidate model 
remains. 
 
2.2.6 Hypergradient optimization. Hypergradient 
optimization is a general term for the collection of 
methods that perform hyperparameter optimization by 
computing a gradient with respect to a ML model’s 
hyperparameters (i.e., a hypergradient) and then 
updating the hyperparameter values by using gradient 
descent [8, 9, 21-23]. Gradient descent and its variants 
have been used for several decades as a basis for 
computing elementary parameter values for a wide 
variety of ML algorithms [24-26]. Rather than using 
gradient descent exclusively for the purpose of 
optimizing a machine learning model’s elementary 
parameters, however, in hypergradient optimization 
gradient descent is leveraged as a means of optimizing 
the model’s hyperparameters, as well. 
 
2.2.7 Summary of current hyperparameter 
optimization methods. Grid search and random search 
notwithstanding, the conceptual paradigm employed by 
the other existing methods of model selection and 
hyperparameter optimization described above is to 
focus on the relationship between the values of the 
hyperparameters and the values of the metric that is 
being used to evaluate the performance of each 
candidate model. These hyperparameter optimization 
methods assume the presence of an underlying but 
unknown objective function that maps the 
hyperparameter values for the current ML algorithm to 
the value of the performance metric. The general goal of 
such methods, then, is to accumulate information about 
the nature of the objective function, and then exploit that 

information to select hyperparameter values that will 
yield a model whose performance is as close to the 
global optimum as possible. The greedy k-fold cross 
validation algorithm described in Section 3 differs from 
all of these guided search methods in that it does not 
actively compute or choose new hyperparameter values 
to evaluate as the optimization process unfolds. Instead, 
the greedy k-fold method exploits the model evaluation 
process itself as a means of accelerating the 
hyperparameter optimization task. 

2.3  k-fold cross validation & ML model 
selection 

Broadly, k-fold cross validation is a technique for 
judging how well a model will generalize to scenarios 
involving novel data that were not considered or “seen” 
when the model was being trained [27, 28]. In the 
context of machine learning, k-fold cross validation has 
become the primary method used by ML practitioners 
when evaluating candidate models [10], not only 
because of the method’s utility as an estimator of 
generalization performance, but also because of its 
ability to reveal problems with selection bias and 
overfitting [29]. The standard k-fold process involves 
splitting the data into k subsets of approximately equal 
size (called folds), with each fold being iteratively used 
as a validation set for a candidate model that has been 
trained using the data from the remaining k – 1 folds 
[11]. During each evaluative iteration, k – 1 of the folds 
are thus used to train the candidate model, with the 
model’s performance being measured using the 
remaining fold. This process is repeated until each fold 
has been used exactly once as a validation set, yielding 
a total of k iterations of training and validation for each 
candidate model. Finally, the model’s overall 
performance is estimated as the mean of the 
performance values obtained from each evaluative 
iteration. This standard method of performing k-fold 
cross validation is illustrated in Figure 2. 

 
Figure 2. Standard k-fold cross validation 

(with k = 5 folds). 
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2.4  Model selection 

Given a specific problem scenario and machine 
learning algorithm, the most widely used strategy for 
identifying and selecting the best-performing ML model 
is to conduct hyperparameter optimization using k-fold 
cross validation [29, 30]. The set of n candidate models 
to be evaluated may be defined in advance (e.g., when 
using a grid search or a random search) or may be 
defined dynamically as the model search process 
unfolds (e.g., when using one of the guided search 
methods described previously). After evaluating as 
many models as possible given the constraints of the 
computational budget, the candidate model with the 
most desirable overall performance characteristics is 
chosen as the final model. A graphical representation of 
the cross validation-based ML model selection process 
is shown in Figure 3.  

 
Figure 3. ML model selection using standard 

k-fold cross validation (with n candidate 
models and k = 5 folds). 

 
As shown in the figure above, the combination of n 

candidate models and k evaluative iterations can be 
thought of as a table, with each column representing one 
of the k evaluative iterations and each row representing 
a candidate model. The overall progress that has been 
made toward completing the evaluation of each 
candidate model is indicated by the color of the table 
cells, with dark-colored cells indicating that the 
evaluative iteration has been completed for the 
corresponding fold and model. Evaluation of candidate 
models thus proceeds one fold at a time, from left to 
right, top to bottom until the computational budget has 
been exhausted, at which time the candidate model with 
the best overall performance is chosen as the final 
model. Using this conceptual framework, it is 
convenient to discuss the total amount of work involved 
in the ML model selection process in terms of the 

number of folds evaluated, where a “fold evaluation” 
refers to a fold being used to validate a candidate model 
that has been trained with the remaining folds. The 
maximum number of folds that could possibly be 
evaluated in the ML model selection process is thus 𝑛𝑛𝑛𝑛, 
with reasonable values for a computational budget 𝑏𝑏 
falling in the interval 𝑘𝑘 ≤ 𝑏𝑏 ≤ 𝑛𝑛𝑛𝑛. 

3. Greedy k-fold cross validation 
Having briefly described the standard k-fold cross 

validation and ML model selection processes as well as 
the existing approaches to hyperparameter optimization, 
we are now fully equipped to understand the greedy k-
fold cross validation algorithm introduced in this 
section. Whereas all existing guided search methods 
seek to accelerate the ML hyperparameter optimization 
and model selection process by identifying and 
searching promising areas within the hyperparameter 
space, the greedy k-fold method takes a completely 
different approach by instead focusing on the k-fold 
cross validation process itself as a means of achieving 
rapid hyperparameter optimization and model selection.  

At a fundamental level, the greedy k-fold cross 
validation method proposed here differs from the 
standard k-fold cross validation process in just one 
important way. In the standard approach, all of the folds 
for a given ML model are considered as validation sets 
in sequential order, one after another, thus allowing the 
overall performance of the model to be computed before 
the algorithm moves on to the next candidate model 
(vide supra, Figure 3). By contrast, greedy k-fold cross 
validation considers a sequence of folds that may 
originate from different ML models, with the specific 
model and validation fold to evaluate next being 
greedily chosen at runtime. Put differently, the standard 
approach to k-fold cross validation can be thought of as 
relying on a sequence of within-model fold evaluations, 
while the greedy approach can be thought of as relying 
on a sequence of between-model fold evaluations. 

In its simplest form, the greedy k-fold cross 
validation algorithm begins by obtaining an incomplete 
performance estimate for each candidate model by using 
just the first fold as a validation set, after having trained 
the model using the k - 1 remaining folds. The model 
with the best initial performance is then identified, after 
which the second fold for that model is used as a 
validation set (with the remaining folds naturally being 
used as the training set). The performance estimate for 
the model is then updated to reflect the mean 
performance thus far observed after having tested the 
model using the first two folds as validation sets. The 
incompletely evaluated model with the best mean 
performance at that moment is then identified, after 
which its next available fold is used as a validation set 
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and the model’s mean performance is updated. This 
process repeats until the computational budget has been 
exhausted, after which the algorithm returns the best, 
fully evaluated model. A graphical example of greedy 
k-fold cross validation in progress is shown in Figure 4 
below, followed by a complete description of the ML 
model selection process as performed using greedy k-
fold cross validation in Algorithm 1. 

 
Figure 4. Greedy k-fold cross validation in 

progress. 
 

Algorithm 1. ML model selection using  
greedy k-fold cross validation. 

Input: M (set of candidate models), k (number of folds), 
D (dataset), b (computational budget) 

Output: Best-performing, fully evaluated model 

split D into k folds, s.t. D = {d1, d2, ..., dk} 
η ← 0  (number of fold evaluations completed) 
for each m ∈ M do 
    train m using folds {d2, ..., dk} 
    Ρm ← performance of m evaluated using fold d1 

    Fm ← 1  (number of folds evaluated for m) 

    η ← η + 1 
end for 
while η < b do (while the computational budget is not 

exhausted) 
    m* = best incompletely evaluated m ∈ M (given the 

current mean performance for each m, per Ρ) 
    Fm* ← Fm* + 1 
    train m* using all folds di ∈ D where i ≠ Fm* 

    evaluate performance of m* using fold dFm* 
    Ρm* ← mean performance of m* for folds {d1, ..., dFm*} 
    η ← η + 1 
end while 
return best, fully evaluated m ∈ M, per Ρ 

 
As indicated in the while loop, the greedy k-fold 

cross validation algorithm behaves greedily by always 
pursuing the most promising available option, with the 
extent to which an option is promising being determined 
by the current mean performance of its corresponding 
model. Put differently, the next fold that the greedy 
algorithm will evaluate will always originate from the 
best incompletely evaluated model, as determined by 
each candidate model’s current mean performance. In 
this way, the greedy k-fold cross validation algorithm 
focuses its early efforts on the most promising candidate 
models. As time passes and the most promising models 
become fully evaluated, the algorithm will steadily 
evaluate folds from less and less promising models, but 
will never waver from the principle of greedily pursuing 
the most promising of its available options on each 
iteration. This behavior thus increases the probability of 
an optimal or near-optimal model being identified 
before the computational budget is exhausted. 

4. Evaluative experiments 

Having presented the greedy k-fold cross validation 
algorithm in the previous section, we will next describe 
a set of evaluative experiments that were undertaken to 
assess the algorithm’s performance in comparison to 
that of the standard k-fold method. To rigorously 
evaluate the greedy k-fold method, its performance was 
compared to the standard method under many 
experimentally manipulated conditions. including using 
a variety of different ML algorithms, a variety of real-
world datasets, and varying values of the number of 
folds (k) and the number of candidate models (n). Prior 
to describing these experiments, however, it is 
necessary to define the way in which the performance of 
the greedy and standard k-fold cross validation methods 
was measured. First, recall from the earlier discussion 
that for a hyperparameter space containing 𝑛𝑛 models 
that are tested with cross validation using 𝑘𝑘 folds, the 
total number of fold evaluations is 𝑛𝑛𝑛𝑛. For a set of n 
candidate models, then, the performance of each method 
was measured by the average search time required to 
find the best-performing model in the set, with search 
time being calculated as the ratio of the total number of 
fold evaluations that were required to find the best-
performing model relative to the total number of nk 
possible fold evaluations. This is a very convenient 
measure of search time since it naturally yields an 
interval that ranges from 0.0 to 1.0, thus allowing 
straightforward performance comparisons to be made 
across experimental conditions. 

Given the search time metric described above, it 
can be readily calculated that the time required to fully 
evaluate each candidate model is  𝑘𝑘

𝑛𝑛𝑛𝑛
= 1

𝑛𝑛
. The maximum 
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theoretical time required to find the optimal model using 
the standard k-fold method is thus 𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛
= 1.0, while the 

minimum search time for the standard method is 1
𝑛𝑛
. 

Since the standard k-fold method essentially employs a 
linear search strategy, the average theoretical search 
time for the standard method is 1

𝑛𝑛𝑛𝑛
∙ 𝑛𝑛𝑛𝑛
2

= 1
2
. On average, 

then, the standard k-fold cross validation method can be 
expected to find the optimal model after having fully 
evaluated 50% of the candidate models. While the 
maximum theoretical search time for the greedy k-fold 
method is also 1.0, the minimum time for the greedy 
method to find the optimal model is 𝑛𝑛+𝑘𝑘−1

𝑛𝑛𝑛𝑛
. The average 

theoretical search time for the greedy method will 
depend on the distributional properties of the training 
data and will hence vary from one scenario to the next. 

As noted previously, a variety of ML algorithms 
and real-world datasets were used in the experiments to 
compare the performance of the greedy k-fold and 
standard (baseline) k-fold cross validation methods. The 
algorithms included the Bernoulli Naïve Bayes, 
Decision Tree, and K-Nearest Neighbors (KNN) 
classifiers, each of which was chosen because of its 
distinct approach to performing the classification task. 
All of the ML algorithms used in the experiments are 
open-source and freely available via the Python scikit-
learn library [31]. The three datasets used in the 
experiments are all well-known among ML 
practitioners, and included the Wisconsin Diagnostic 
Breast Cancer dataset (569 cases, 30 features, 2 classes), 
the Boston Home Prices dataset (506 cases, 13 features, 
4 classes – discretized using a quartile split), and the 
Optical Recognition of Handwritten Digits dataset 
(1797 cases, 64 features, 10 classes). These three 
datasets were chosen because they varied widely in 
terms of their numbers of cases, features, and classes, 
and because they are all freely available as part of the 
scikit-learn library [31], thus helping to ensure that the 
results can be easily replicated. 

For each combination of ML classifier and dataset, 
𝑛𝑛 different models were evaluated using 𝑘𝑘 ∈ {5, 10, 20} 
folds for each k-fold method. These values of 𝑘𝑘 were 
chosen based on their common usage in applied ML 
projects. The set of values used in the experiments for n 
was derived from a geometric sequence with a common 
factor of two: 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 for 𝑥𝑥 ∈ {7, 8, … , 11}, yielding:                                      
𝑛𝑛 ∈ {128, 256, 512, 1024, 2048}.  

The candidate models that were evaluated in the 
experiments varied according to the values of their 
hyperparameters, with the hyperparameter settings for 
each model being chosen randomly in accordance with 
Bergstra & Bengio [15] using the same ranges of 
possible values for each hyperparameter that were used 
by Olsen et al. [14]. For each combination of classifier, 
dataset, and n, the same set of candidate models was 
used to evaluate the standard (baseline) k-fold method 
and the greedy k-fold method. This approach was 
adopted to ensure that any differences in inter-method 
performance could not be attributed to variation in 
hyperparameter settings among the n available models. 
Finally, 30 iterations of each experiment were carried 
out for each combination of classifier, dataset, n, and k 
in order to ensure that the resulting performance metric 
distributions would be statistically stable. With two k-
fold methods, three ML algorithms, three datasets, three 
values of k, and five values of n, a total of 270 different 
conditions were tested throughout the course of the 
experiments. The results of these efforts are reported 
and discussed in the following section. 

5. Results & discussion 

The average search time required by the greedy and 
standard k-fold cross validation methods to find the 
optimal model using different ML algorithms, datasets, 
and values of k is provided in Table 1 below, with the 
results in the table being computed using all possible 
values of n. 

Table 1. Average search time to find optimal model. 

Dataset Algorithm Greedy k-Fold Method Standard k-Fold Method 
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 

Boston Home Prices 
Bernoulli Naïve Bayes 0.342*** 0.299*** 0.301*** 0.495 0.496 0.496 

Decision Tree 0.280*** 0.231*** 0.229*** 0.522 0.524 0.514 
K-Nearest Neighbors 0.320*** 0.291*** 0.278*** 0.501 0.488 0.489 

Wisconsin Diagnostic 
Breast Cancer 

Bernoulli Naïve Bayes 0.282*** 0.217*** 0.212*** 0.491 0.521 0.488 
Decision Tree 0.291*** 0.248*** 0.219*** 0.516 0.547 0.492 

K-Nearest Neighbors 0.328*** 0.283*** 0.306*** 0.459 0.493 0.492 

Optical Recognition of 
Handwritten Digits 

Bernoulli Naïve Bayes 0.236*** 0.164*** 0.146*** 0.523 0.515 0.468 
Decision Tree 0.231*** 0.148*** 0.113*** 0.494 0.440 0.526 

K-Nearest Neighbors 0.270*** 0.193*** 0.191*** 0.504 0.482 0.530 
*** indicates p < 0.001 for a Welch’s t-test comparing the performance of the greedy method to the standard method 
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The probability values in Table 1 are for two-tailed 
Welch’s t-tests comparing the performance of the 
greedy method to the standard method in corresponding 
experimental conditions. Welch’s t-tests were used 
because there was no reason to expect that the 
distributions of the performance metrics for the greedy 
and standard k-fold methods would have equal 
variances, and unlike many other types of t-tests, 
Welch’s t-tests allow for unequal variances between the 
independent samples [32]. As the probability values in 
the table reveal, in terms of its ability to quickly identify 
the optimal model, the greedy k-fold method statistically 
outperformed the standard k-fold method at the p < 
0.001 level in every combination of dataset, ML 
algorithm, and value of k used in the experiments. These 
results provide strong statistical evidence for the 
superiority of the greedy k-fold method over the 
standard k-fold method in identifying optimal or near-
optimal ML models when operating under the constraint 
of a computational budget. 

Having established the statistical superiority of the 
greedy k-fold method, we may next inquire into the 
relative magnitude of that superiority. Among the 27 
unique combinations of datasets, ML algorithms, and 
values of k reported in Table 1, the overall mean search 
time for the greedy method was 0.246 (std dev = 0.059), 
while the overall mean search time for the standard 
method was 0.500 (std dev = 0.023). This suggests that 
among the datasets and ML algorithms used in the 
experiments, the greedy method on average identified 
the optimal model among the set of n candidate models 
after completing 24.6% of the possible fold evaluations, 
while the standard method on average identified the 
optimal model after completing 50.0% of the possible 
fold evaluations. Note that this latter outcome conforms 
precisely with the theoretically expected average for the 
standard method described in Section 4. Put differently, 
the greedy k-fold method identified the best-performing 
ML model among the set of candidate models more than 
twice as quickly on average than the standard k-fold 
method. As an illustrative example of this major 
difference in performance, Figure 5 below depicts the 
average search time of the greedy vs. standard k-fold 
methods using a decision tree classifier on the 
Wisconsin Diagnostic Breast Cancer dataset. 

The results presented in Table 1 and Figure 5 reflect 
the comparative performance of the standard and greedy 
k-fold methods across a variety of datasets, ML 
algorithms, and values of k. Those results, however, 
were computed for all of the possible values of n that 
were used in the experiments. It is, of course, possible 
to gain more detailed insights by disaggregating these 
results and considering how various values of n impact 
the comparative performance of the standard and greedy 
k-fold methods. While space limitations make it 
infeasible to visualize the comparative performance of 

these two different cross validation methods for all 135 
unique combinations of datasets, ML algorithms, values 
of k, and values of n used in the experiments, a 
representative example is provided in Figure 6 below. 
This figure shows how the greedy k-fold method 
performed against the standard (baseline) method for 
varying numbers of n candidate models on the Boston 
House Prices dataset at values of 𝑘𝑘 ∈ {5, 10, 20}. 

 

 
Figure 5. Comparative performance of the 

greedy and standard k-fold methods. 
 

 
Figure 6. Greedy k-fold method performance 

for varying numbers of candidate models. 
 
Regardless of the dataset, ML algorithm, number of 

folds, or number of candidate models, the greedy k-fold 
method was observed to consistently outperform the 
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standard k-fold method on average during the 
experiments. In the absence of counterevidence, these 
observations provide support for the notion that the 
greedy k-fold method is generally superior to the 
standard k-fold method in quickly identifying optimal 
ML models, regardless of the dataset, ML algorithm, 
number of folds, or number of candidate models. Since 
the data suggest that the greedy method is, on average, 
approximately twice as efficient as the standard method 
in terms of its ability to quickly locate top-performing 
ML models, it is recommended that the greedy method 
be given serious consideration in any machine learning 
hyperparameter tuning / model selection scenario, 
particularly when an ML practitioner is operating under 
the common constraint of a computational budget. 

6. Summary, limitations, & future research 
This paper developed and presented a greedy 

algorithm for performing k-fold cross validation and 
showed through a large set of experiments that the 
greedy method clearly and substantially outperforms the 
standard k-fold method in its ability to quickly identify 
optimal or near-optimal machine learning models. More 
specifically, given a set of candidate models, the greedy 
k-fold method will, on average, identify the optimal 
model approximately twice as quickly as the standard 
method. This means that given a fixed computational 
budget, approximately twice as many candidate models 
could be considered by using the greedy k-fold method 
than could otherwise be considered by using the 
standard method. Alternatively, given a fixed number of 
candidate models, the greedy k-fold method would 
allow the best-performing models in the set to be 
identified using just half of the computational budget 
that would be required to achieve the same results using 
the standard method. From a practical perspective, these 
properties of the greedy k-fold method can translate to 
huge savings for companies by reducing the time and 
money required to develop and train ML-based products 
and services, thereby yielding substantial gains in 
competitive advantage. The greedy k-fold method can 
also provide major benefits to AI and machine learning 
researchers who are developing and performing 
hyperparameter optimization on complex ML models. 

As with all research, this project has several 
limitations that merit acknowledgement. First, although 
efforts were taken to test the greedy k-fold algorithm on 
a variety of datasets, those datasets were all relatively 
small, with the largest dataset containing just 1,797 
cases and 64 features. There is some indication among 
the results presented in Table 1 that the performance of 
the greedy k-fold method may improve on larger 
datasets (possibly due to less variation among the 
distributions of each fold), but this notion was not 
explicitly tested in the current study. Second, while the 

greedy method was subjected to three different ML 
algorithms in this project, all of those algorithms were 
classifiers. There is no obvious a priori reason to expect 
that the greedy k-fold method would perform differently 
for ML algorithms that produce ordinal or continuous 
predictions. Nevertheless, such algorithms were not 
used in the current study, which limits the 
generalizability of the results. Finally, the performance 
of the greedy k-fold method described in the current 
paper was compared only against the standard k-fold 
method in terms of its ability to quickly identify an 
optimal model. While the greedy method is unique in 
terms of its focus on cross validation as a means of 
accelerating the hyperparameter optimization / ML 
model selection process, many other approaches to 
hyperparameter optimization have been proposed, and 
the greedy k-fold method has not yet been compared to 
those methods. 

Ultimately, this paper represents but a small first 
step in investigating greedy k-fold cross validation and 
its potential as an accelerant for ML hyperparameter 
optimization and model selection, and much remains to 
be done. To be sure, the greedy k-fold method described 
in this study is the simplest possible version of the 
algorithm, and more advanced and better performing 
algorithms based on the same principles may certainly 
be feasible. For example, could a more effective 
approach be developed to handle the exploration / 
exploitation dilemma? Could the distributional 
properties of a model’s folds be utilized as a basis for 
early abandonment of unpromising models? Can the 
greedy k-fold method be combined with other 
approaches designed to accelerate hyperparameter 
optimization in order to identify optimal ML models 
even more quickly? All of these questions remain to be 
answered and hence represent fruitful opportunities for 
future research in this area. For now, we must content 
ourselves with the knowledge that the greedy k-fold 
cross validation algorithm appears to be highly 
promising with respect to its ability to outperform the 
standard k-fold approach, which itself has undeniably 
been a mainstay of the ML community for several 
decades. 
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