
Rapid Selection of Machine Learning Models Using Greedy Cross Validation

Daniel S. Soper
Department of Information Systems & Decision Sciences,

California State University, Fullerton
dsoper@fullerton.edu

Abstract
This paper introduces a greedy method of

performing k-fold cross validation and shows how the
proposed greedy method can be used to rapidly identify
optimal or near-optimal machine learning (ML) models.
Although many methods have been proposed that apply
metaheuristic and other search methods to the
hyperparameter space as a means of accelerating ML
model selection, the cross-validation process itself has
been overlooked as a means of rapidly identifying
optimal ML models. The current study remedies this
oversight by describing a simple, greedy cross
validation algorithm and demonstrating that even in its
simplest form, the greedy cross validation method can
vastly reduce the average time required to identify an
optimal or near-optimal ML model within a large set of
candidate models. This substantially reduced search
time is shown to hold across a variety of different ML
algorithms and real-world datasets.

1. Introduction

Organizational development and adoption of
artificial intelligence (AI) and machine learning (ML)
technologies has exploded in popularity in recent years.
One of the most significant drivers of this rapid rise of
AI and ML has been cloud computing, through which
the vast computational resources required to train and
evaluate complex machine learning models have
become widely available on an elastic, as-needed basis
[1]. Despite the widespread availability of cloud-based
computational resources, both the execution time
required to train today’s complex, state-of-the-art ML
models and the cloud computing costs associated with
training those models remain major obstacles in many
real-world scientific, governmental, and commercial
use cases [2]. Further, this problem is often made
exponentially worse by the need to perform
hyperparameter optimization, wherein a large number of
candidate models with varying hyperparameter settings
are trained and evaluated in an effort to find the best-
performing model [3, 4]. Tools and methods aimed at
reducing the computational workload and associated

monetary costs of arriving at a final, best-performing
ML model are therefore highly desirable.

Since evaluating many ML models can be very
time-consuming and expensive, many researchers have
considered the important problem of how to find an
optimal or near-optimal ML model among the set of all
possible models as quickly as possible. Unfortunately,
many of the hyperparameters involved in ML model
design and training are real-valued, which implies that
there is often an infinite number of possible models that
theoretically could be evaluated for a particular ML
scenario. Recognizing that this situation clearly makes a
brute-force model search infeasible, a considerable
variety of approaches have been proposed for searching
a finite subset of the infinite model space. The simplest
and most common of these methods involve performing
a grid search or a random search, with the latter
approach serving as a natural baseline for inter-method
performance comparisons [3]. Several more
sophisticated guided search methods have also been
proposed, including Bayesian methods [5], population-
based approaches such as evolutionary optimization [6],
early stopping methods [7], and hypergradient
optimization [8, 9], among others. Despite the different
rules and theories upon which these guided search
methods are based, all share a common general strategy:
to identify relationships between hyperparameter values
and a performance metric, and then use that knowledge
to evaluate models located within promising regions of
the search space. This general strategy for performing
hyperparameter optimization is illustrated in Figure 1.

With respect to the general approach to
hyperparameter optimization, the factors that
distinguish one guided search method from another are
(1) variations in how tuples of hyperparameters are
selected, (2) the stopping conditions that are used, and
(3) the information about the relationships between the
hyperparameters and the performance metric that is used
to guide the search process. Together, these three factors
are respectively represented by items A, C, and D in
Figure 1. What remains, then, is item B, which
represents the process of training and evaluating one or
more candidate models, with each candidate model
corresponding to a tuple of hyperparameter values from

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 7526
URI: https://hdl.handle.net/10125/80245
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

mailto:dsoper@fullerton.edu

item A. Evaluating the performance of each candidate
model can be accomplished via any statistically
defensible process, regardless of the specific guided
search method being used. In practice, the task of
evaluating an ML model’s performance is most

commonly carried out using k-fold cross validation [10],
wherein the data are randomly subdivided into k folds,
with each fold being iteratively used as a validation set
for a model that has been trained using the remaining
k - 1 folds [11].

Figure 1. The general approach to hyperparameter optimization used by guided search methods.

In contrast to all existing guided search methods for

hyperparameter optimization, this study takes a
completely different approach by considering the ML
model training and evaluation process as a means of
accelerating the search for an optimal model. Put
differently, rather than trying to find promising regions
within the hyperparameter space, this study instead
focuses on the process of measuring model performance
as a way of reducing the time and costs associated with
evaluating many candidate ML models. In the context
of Figure 1, the current study is thus primarily
concerned with item B, which, as noted in the discussion
above, has been generally overlooked as a means of
performing rapid hyperparameter optimization. Given
that ML model performance is most commonly carried
out using k-fold cross validation, this paper explicitly
seeks to pioneer a new approach to hyperparameter
optimization by inquiring into the following general re-
search question:

Research Question: When performing hyperparameter
optimization with k-fold cross vali-dation, is it possible
to improve the average time required to find the best-
performing model by taking a greedy approach to the k-
fold process itself?

The balance of this paper is organized as follows:
Section 2 provides a review of the related literature by
describing current methods of performing
hyperparameter optimization, as well as the standard
approach to k-fold cross validation. The greedy k-fold
cross validation algorithm that forms the core of the
current study is introduced in Section 3, along with a
discussion of the algorithm’s properties. Section 4
describes a series of experiments that were undertaken
to evaluate the performance of the greedy k-fold method
relative to the baseline standard k-fold method, with the
experiments comparing the ML model search
performance of the greedy and standard methods across
a variety of different ML algorithms and real-world
datasets. The outcomes of the evaluative experiments

are presented and discussed in Section 5, with the results
indicating that greedy k-fold cross validation can vastly
reduce the average time required to identify the best-
performing ML model within a set of candidate models.
The paper concludes with Section 6, which provides a
brief summary, describes the limitations of the work,
and offers a few remarks about future research.

2. Related work

2.1 Hyperparameter optimization & model
selection

When developing ML-based solutions, it is
standard practice to evaluate a variety of different ML
models with a view toward identifying the best model
possible given the project’s temporal or financial
constraints (which collectively define the ML project’s
computation budget) [12]. The term model as it is being
used here refers to a combination of an ML algorithm
and the specific values that have been chosen for the
algorithm’s tunable or definable parameters. These
parameters can be structural – for example, the number
of hidden layers or the number of nodes per layer in a
neural network – or they can be algorithmic parameters
that control the learning process, such as the mini-batch
size or the learning rate. Collectively, these structural
and algorithmic parameters are referred to as the
model’s hyperparameters, and the task of searching for
the best possible combination of hyperparameter
settings for a particular problem is referred to as
hyperparameter optimization [3]. Evaluating many
combinations of ML algorithms and hyperparameter
settings (i.e., evaluating many models) is typically
necessary because research has shown that no single ML
algorithm or set of hyperparameter settings yields
optimal results for all possible datasets or problem
domains [13, 14]. Indeed, a particular combination of an
ML algorithm and a set of hyperparameter settings may
perform very well in one scenario while performing

Page 7527

very poorly in another scenario. Since every ML model
has hyperparameters, and since identifying the best
possible model given the project’s computational
budget is commonly of paramount importance,
hyperparameter optimization has become an
indispensable step in the broader process of developing
an ML-based solution.

2.2 Current hyperparameter optimization
methods

2.2.1 Grid search. Grid search is one of the most
widely used and well-established methods of
performing hyperparameter optimization among
machine learning practitioners [15]. In a grid search, the
ML practitioner first specifies a finite set of values for
each hyperparameter, after which the grid search
algorithm performs an exhaustive search by evaluating
the Cartesian product of these sets of hyperparameter
values [3]. As with all hyperparameter optimization
methods, the ML practitioner must instruct the grid
search algorithm to use a specific performance metric
when evaluating a set of candidate models, with overall
model performance typically being determined via k-
fold cross validation [10].

2.2.2 Random search. Rather than iterating over the
Cartesian product of all of the sets of hyperparameter
values defined by the ML practitioner, a random search
proceeds by evaluating ML models whose
hyperparameter values have been chosen randomly. As
with a grid search, the random search method can be
readily applied to discrete, continuous, or mixed
hyperparameter spaces. It is common practice when
conducting a random search to establish a
computational budget for the search process in which
the search for the best-performing model continues until
a certain number of models have been evaluated or a
certain amount of time has elapsed [3].

There are several reasons why the random search
method serves as an excellent baseline against which to
compare the performance of other hyperparameter
optimization methods. First, the random search method
does not make any assumptions about the specific ML
problem domain or hyperparameter space in which it is
operating. Similarly, the random search method does
not make or rely on any assumptions about the specific
ML algorithm whose hyperparameters it is attempting
to optimize. Lastly, given a sufficient computational
budget, a random search will eventually identify a
model in the hyperparameter space whose distance from
the globally optimal model is within any arbitrarily
chosen degree of precision. Since random search has
been shown to outperform many sophisticated search
algorithms in scenarios involving a fixed computational

budget and no prior knowledge of the hyperparameter
space, using the random search performance as a
comparative baseline is critical when evaluating the new
metaheuristic search algorithms [16].

2.2.3 Bayesian optimization. In the context of
hyperparameter optimization, Bayesian optimization is
an iterative method that relies on Bayes’s Theorem to
guide the hyperparameter search process [17]. This
method works via a combination of two primary
elements: (1) a probabilistic surrogate model, and (2) an
acquisition function that is based on the surrogate model
[3]. During each iteration, the surrogate model is first
updated using the actual observations about the
relationship between the hyperparameters and the
performance metric that have thus far been obtained,
yielding a posterior distribution. The acquisition
function is then maximized to identify the most
promising tuple of hyperparameter values to evaluate
next. A candidate model that uses the most promising
tuple of hyperparameter values is then evaluated in the
actual search space, with the results being used to update
the surrogate model for the next iteration. This process
repeats until a stopping condition is met, such as the
exhaustion of a computational budget or a sufficiently
small difference in candidate model performance from
one iteration to the next.

2.2.4 Evolutionary optimization. As the name
suggests, evolutionary optimization is an iterative
method of performing hyperparameter optimization that
relies on principles adopted from the biological process
of evolution, such as mutation, recombination,
adaptation to the environment, and survival of the fittest
[18]. The evolutionary optimization process begins by
creating a population consisting of a reasonably large
number of randomly generated hyperparameter con-
figurations. Next, the performance of each of these
members of the population is evaluated in light of the
data and the chosen ML algorithm, typically by means
of k-fold cross validation. The tuples of hyperparameter
values are then ranked according to their observed levels
of performance. Next, the worst-performing members of
the population are discarded and replaced by new
members, with the hyperparameter values for the new
members being generated by means of mutation or
recombination of the hyperparameter values of the best-
performing members of the population. Finally, the
performance of each of the newly generated members is
evaluated, and the population is re-ranked. These tasks
are repeated until a stopping condition is met, such as
the exhaustion of a computational budget or a
sufficiently small difference in the performance of the
best-performing candidate model from one iteration to
the next.

Page 7528

2.2.5 Early stopping optimization. Early stopping
optimization is an approach to hyperparameter
optimization that relies on a strategy of pruning many
unpromising hyperparameter configurations as quickly
as possible, thus allowing a steadily increasing
proportion of the available computational budget to be
directed at evaluating more promising hyperparameter
configurations in greater detail. Several variants of the
early stopping method have been proposed in recent
years, notably including successive halving [19, 20],
asynchronous successive halving [4], and Hyperband
[7]. Beginning with a fixed computational budget and a
large, randomly generated set of candidate models, the
early stopping methods first perform a quick, shallow
evaluation of each candidate model. Next, the worst-
performing models are discarded (i.e., any further
consideration of the worst-performing models is
stopped early), and a larger proportion of the
computational budget is allocated toward evaluating the
remaining candidate models in greater detail. This
process is repeated until only a single candidate model
remains.

2.2.6 Hypergradient optimization. Hypergradient
optimization is a general term for the collection of
methods that perform hyperparameter optimization by
computing a gradient with respect to a ML model’s
hyperparameters (i.e., a hypergradient) and then
updating the hyperparameter values by using gradient
descent [8, 9, 21-23]. Gradient descent and its variants
have been used for several decades as a basis for
computing elementary parameter values for a wide
variety of ML algorithms [24-26]. Rather than using
gradient descent exclusively for the purpose of
optimizing a machine learning model’s elementary
parameters, however, in hypergradient optimization
gradient descent is leveraged as a means of optimizing
the model’s hyperparameters, as well.

2.2.7 Summary of current hyperparameter
optimization methods. Grid search and random search
notwithstanding, the conceptual paradigm employed by
the other existing methods of model selection and
hyperparameter optimization described above is to
focus on the relationship between the values of the
hyperparameters and the values of the metric that is
being used to evaluate the performance of each
candidate model. These hyperparameter optimization
methods assume the presence of an underlying but
unknown objective function that maps the
hyperparameter values for the current ML algorithm to
the value of the performance metric. The general goal of
such methods, then, is to accumulate information about
the nature of the objective function, and then exploit that

information to select hyperparameter values that will
yield a model whose performance is as close to the
global optimum as possible. The greedy k-fold cross
validation algorithm described in Section 3 differs from
all of these guided search methods in that it does not
actively compute or choose new hyperparameter values
to evaluate as the optimization process unfolds. Instead,
the greedy k-fold method exploits the model evaluation
process itself as a means of accelerating the
hyperparameter optimization task.

2.3 k-fold cross validation & ML model
selection

Broadly, k-fold cross validation is a technique for
judging how well a model will generalize to scenarios
involving novel data that were not considered or “seen”
when the model was being trained [27, 28]. In the
context of machine learning, k-fold cross validation has
become the primary method used by ML practitioners
when evaluating candidate models [10], not only
because of the method’s utility as an estimator of
generalization performance, but also because of its
ability to reveal problems with selection bias and
overfitting [29]. The standard k-fold process involves
splitting the data into k subsets of approximately equal
size (called folds), with each fold being iteratively used
as a validation set for a candidate model that has been
trained using the data from the remaining k – 1 folds
[11]. During each evaluative iteration, k – 1 of the folds
are thus used to train the candidate model, with the
model’s performance being measured using the
remaining fold. This process is repeated until each fold
has been used exactly once as a validation set, yielding
a total of k iterations of training and validation for each
candidate model. Finally, the model’s overall
performance is estimated as the mean of the
performance values obtained from each evaluative
iteration. This standard method of performing k-fold
cross validation is illustrated in Figure 2.

Figure 2. Standard k-fold cross validation

(with k = 5 folds).

Page 7529

2.4 Model selection

Given a specific problem scenario and machine
learning algorithm, the most widely used strategy for
identifying and selecting the best-performing ML model
is to conduct hyperparameter optimization using k-fold
cross validation [29, 30]. The set of n candidate models
to be evaluated may be defined in advance (e.g., when
using a grid search or a random search) or may be
defined dynamically as the model search process
unfolds (e.g., when using one of the guided search
methods described previously). After evaluating as
many models as possible given the constraints of the
computational budget, the candidate model with the
most desirable overall performance characteristics is
chosen as the final model. A graphical representation of
the cross validation-based ML model selection process
is shown in Figure 3.

Figure 3. ML model selection using standard

k-fold cross validation (with n candidate
models and k = 5 folds).

As shown in the figure above, the combination of n

candidate models and k evaluative iterations can be
thought of as a table, with each column representing one
of the k evaluative iterations and each row representing
a candidate model. The overall progress that has been
made toward completing the evaluation of each
candidate model is indicated by the color of the table
cells, with dark-colored cells indicating that the
evaluative iteration has been completed for the
corresponding fold and model. Evaluation of candidate
models thus proceeds one fold at a time, from left to
right, top to bottom until the computational budget has
been exhausted, at which time the candidate model with
the best overall performance is chosen as the final
model. Using this conceptual framework, it is
convenient to discuss the total amount of work involved
in the ML model selection process in terms of the

number of folds evaluated, where a “fold evaluation”
refers to a fold being used to validate a candidate model
that has been trained with the remaining folds. The
maximum number of folds that could possibly be
evaluated in the ML model selection process is thus 𝑛𝑛𝑛𝑛,
with reasonable values for a computational budget 𝑏𝑏
falling in the interval 𝑘𝑘 ≤ 𝑏𝑏 ≤ 𝑛𝑛𝑛𝑛.

3. Greedy k-fold cross validation
Having briefly described the standard k-fold cross

validation and ML model selection processes as well as
the existing approaches to hyperparameter optimization,
we are now fully equipped to understand the greedy k-
fold cross validation algorithm introduced in this
section. Whereas all existing guided search methods
seek to accelerate the ML hyperparameter optimization
and model selection process by identifying and
searching promising areas within the hyperparameter
space, the greedy k-fold method takes a completely
different approach by instead focusing on the k-fold
cross validation process itself as a means of achieving
rapid hyperparameter optimization and model selection.

At a fundamental level, the greedy k-fold cross
validation method proposed here differs from the
standard k-fold cross validation process in just one
important way. In the standard approach, all of the folds
for a given ML model are considered as validation sets
in sequential order, one after another, thus allowing the
overall performance of the model to be computed before
the algorithm moves on to the next candidate model
(vide supra, Figure 3). By contrast, greedy k-fold cross
validation considers a sequence of folds that may
originate from different ML models, with the specific
model and validation fold to evaluate next being
greedily chosen at runtime. Put differently, the standard
approach to k-fold cross validation can be thought of as
relying on a sequence of within-model fold evaluations,
while the greedy approach can be thought of as relying
on a sequence of between-model fold evaluations.

In its simplest form, the greedy k-fold cross
validation algorithm begins by obtaining an incomplete
performance estimate for each candidate model by using
just the first fold as a validation set, after having trained
the model using the k - 1 remaining folds. The model
with the best initial performance is then identified, after
which the second fold for that model is used as a
validation set (with the remaining folds naturally being
used as the training set). The performance estimate for
the model is then updated to reflect the mean
performance thus far observed after having tested the
model using the first two folds as validation sets. The
incompletely evaluated model with the best mean
performance at that moment is then identified, after
which its next available fold is used as a validation set

Page 7530

and the model’s mean performance is updated. This
process repeats until the computational budget has been
exhausted, after which the algorithm returns the best,
fully evaluated model. A graphical example of greedy
k-fold cross validation in progress is shown in Figure 4
below, followed by a complete description of the ML
model selection process as performed using greedy k-
fold cross validation in Algorithm 1.

Figure 4. Greedy k-fold cross validation in

progress.

Algorithm 1. ML model selection using
greedy k-fold cross validation.

Input: M (set of candidate models), k (number of folds),
D (dataset), b (computational budget)

Output: Best-performing, fully evaluated model

split D into k folds, s.t. D = {d1, d2, ..., dk}
η ← 0 (number of fold evaluations completed)
for each m ∈ M do
 train m using folds {d2, ..., dk}
 Ρm ← performance of m evaluated using fold d1

 Fm ← 1 (number of folds evaluated for m)

 η ← η + 1
end for
while η < b do (while the computational budget is not

exhausted)
 m* = best incompletely evaluated m ∈ M (given the

current mean performance for each m, per Ρ)
 Fm* ← Fm* + 1
 train m* using all folds di ∈ D where i ≠ Fm*

 evaluate performance of m* using fold dFm*
 Ρm* ← mean performance of m* for folds {d1, ..., dFm*}
 η ← η + 1
end while
return best, fully evaluated m ∈ M, per Ρ

As indicated in the while loop, the greedy k-fold

cross validation algorithm behaves greedily by always
pursuing the most promising available option, with the
extent to which an option is promising being determined
by the current mean performance of its corresponding
model. Put differently, the next fold that the greedy
algorithm will evaluate will always originate from the
best incompletely evaluated model, as determined by
each candidate model’s current mean performance. In
this way, the greedy k-fold cross validation algorithm
focuses its early efforts on the most promising candidate
models. As time passes and the most promising models
become fully evaluated, the algorithm will steadily
evaluate folds from less and less promising models, but
will never waver from the principle of greedily pursuing
the most promising of its available options on each
iteration. This behavior thus increases the probability of
an optimal or near-optimal model being identified
before the computational budget is exhausted.

4. Evaluative experiments

Having presented the greedy k-fold cross validation
algorithm in the previous section, we will next describe
a set of evaluative experiments that were undertaken to
assess the algorithm’s performance in comparison to
that of the standard k-fold method. To rigorously
evaluate the greedy k-fold method, its performance was
compared to the standard method under many
experimentally manipulated conditions. including using
a variety of different ML algorithms, a variety of real-
world datasets, and varying values of the number of
folds (k) and the number of candidate models (n). Prior
to describing these experiments, however, it is
necessary to define the way in which the performance of
the greedy and standard k-fold cross validation methods
was measured. First, recall from the earlier discussion
that for a hyperparameter space containing 𝑛𝑛 models
that are tested with cross validation using 𝑘𝑘 folds, the
total number of fold evaluations is 𝑛𝑛𝑛𝑛. For a set of n
candidate models, then, the performance of each method
was measured by the average search time required to
find the best-performing model in the set, with search
time being calculated as the ratio of the total number of
fold evaluations that were required to find the best-
performing model relative to the total number of nk
possible fold evaluations. This is a very convenient
measure of search time since it naturally yields an
interval that ranges from 0.0 to 1.0, thus allowing
straightforward performance comparisons to be made
across experimental conditions.

Given the search time metric described above, it
can be readily calculated that the time required to fully
evaluate each candidate model is 𝑘𝑘

𝑛𝑛𝑛𝑛
= 1

𝑛𝑛
. The maximum

Page 7531

theoretical time required to find the optimal model using
the standard k-fold method is thus 𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛
= 1.0, while the

minimum search time for the standard method is 1
𝑛𝑛
.

Since the standard k-fold method essentially employs a
linear search strategy, the average theoretical search
time for the standard method is 1

𝑛𝑛𝑛𝑛
∙ 𝑛𝑛𝑛𝑛
2

= 1
2
. On average,

then, the standard k-fold cross validation method can be
expected to find the optimal model after having fully
evaluated 50% of the candidate models. While the
maximum theoretical search time for the greedy k-fold
method is also 1.0, the minimum time for the greedy
method to find the optimal model is 𝑛𝑛+𝑘𝑘−1

𝑛𝑛𝑛𝑛
. The average

theoretical search time for the greedy method will
depend on the distributional properties of the training
data and will hence vary from one scenario to the next.

As noted previously, a variety of ML algorithms
and real-world datasets were used in the experiments to
compare the performance of the greedy k-fold and
standard (baseline) k-fold cross validation methods. The
algorithms included the Bernoulli Naïve Bayes,
Decision Tree, and K-Nearest Neighbors (KNN)
classifiers, each of which was chosen because of its
distinct approach to performing the classification task.
All of the ML algorithms used in the experiments are
open-source and freely available via the Python scikit-
learn library [31]. The three datasets used in the
experiments are all well-known among ML
practitioners, and included the Wisconsin Diagnostic
Breast Cancer dataset (569 cases, 30 features, 2 classes),
the Boston Home Prices dataset (506 cases, 13 features,
4 classes – discretized using a quartile split), and the
Optical Recognition of Handwritten Digits dataset
(1797 cases, 64 features, 10 classes). These three
datasets were chosen because they varied widely in
terms of their numbers of cases, features, and classes,
and because they are all freely available as part of the
scikit-learn library [31], thus helping to ensure that the
results can be easily replicated.

For each combination of ML classifier and dataset,
𝑛𝑛 different models were evaluated using 𝑘𝑘 ∈ {5, 10, 20}
folds for each k-fold method. These values of 𝑘𝑘 were
chosen based on their common usage in applied ML
projects. The set of values used in the experiments for n
was derived from a geometric sequence with a common
factor of two: 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 for 𝑥𝑥 ∈ {7, 8, … , 11}, yielding:
𝑛𝑛 ∈ {128, 256, 512, 1024, 2048}.

The candidate models that were evaluated in the
experiments varied according to the values of their
hyperparameters, with the hyperparameter settings for
each model being chosen randomly in accordance with
Bergstra & Bengio [15] using the same ranges of
possible values for each hyperparameter that were used
by Olsen et al. [14]. For each combination of classifier,
dataset, and n, the same set of candidate models was
used to evaluate the standard (baseline) k-fold method
and the greedy k-fold method. This approach was
adopted to ensure that any differences in inter-method
performance could not be attributed to variation in
hyperparameter settings among the n available models.
Finally, 30 iterations of each experiment were carried
out for each combination of classifier, dataset, n, and k
in order to ensure that the resulting performance metric
distributions would be statistically stable. With two k-
fold methods, three ML algorithms, three datasets, three
values of k, and five values of n, a total of 270 different
conditions were tested throughout the course of the
experiments. The results of these efforts are reported
and discussed in the following section.

5. Results & discussion

The average search time required by the greedy and
standard k-fold cross validation methods to find the
optimal model using different ML algorithms, datasets,
and values of k is provided in Table 1 below, with the
results in the table being computed using all possible
values of n.

Table 1. Average search time to find optimal model.

Dataset Algorithm Greedy k-Fold Method Standard k-Fold Method
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

Boston Home Prices
Bernoulli Naïve Bayes 0.342*** 0.299*** 0.301*** 0.495 0.496 0.496

Decision Tree 0.280*** 0.231*** 0.229*** 0.522 0.524 0.514
K-Nearest Neighbors 0.320*** 0.291*** 0.278*** 0.501 0.488 0.489

Wisconsin Diagnostic
Breast Cancer

Bernoulli Naïve Bayes 0.282*** 0.217*** 0.212*** 0.491 0.521 0.488
Decision Tree 0.291*** 0.248*** 0.219*** 0.516 0.547 0.492

K-Nearest Neighbors 0.328*** 0.283*** 0.306*** 0.459 0.493 0.492

Optical Recognition of
Handwritten Digits

Bernoulli Naïve Bayes 0.236*** 0.164*** 0.146*** 0.523 0.515 0.468
Decision Tree 0.231*** 0.148*** 0.113*** 0.494 0.440 0.526

K-Nearest Neighbors 0.270*** 0.193*** 0.191*** 0.504 0.482 0.530
*** indicates p < 0.001 for a Welch’s t-test comparing the performance of the greedy method to the standard method

Page 7532

The probability values in Table 1 are for two-tailed
Welch’s t-tests comparing the performance of the
greedy method to the standard method in corresponding
experimental conditions. Welch’s t-tests were used
because there was no reason to expect that the
distributions of the performance metrics for the greedy
and standard k-fold methods would have equal
variances, and unlike many other types of t-tests,
Welch’s t-tests allow for unequal variances between the
independent samples [32]. As the probability values in
the table reveal, in terms of its ability to quickly identify
the optimal model, the greedy k-fold method statistically
outperformed the standard k-fold method at the p <
0.001 level in every combination of dataset, ML
algorithm, and value of k used in the experiments. These
results provide strong statistical evidence for the
superiority of the greedy k-fold method over the
standard k-fold method in identifying optimal or near-
optimal ML models when operating under the constraint
of a computational budget.

Having established the statistical superiority of the
greedy k-fold method, we may next inquire into the
relative magnitude of that superiority. Among the 27
unique combinations of datasets, ML algorithms, and
values of k reported in Table 1, the overall mean search
time for the greedy method was 0.246 (std dev = 0.059),
while the overall mean search time for the standard
method was 0.500 (std dev = 0.023). This suggests that
among the datasets and ML algorithms used in the
experiments, the greedy method on average identified
the optimal model among the set of n candidate models
after completing 24.6% of the possible fold evaluations,
while the standard method on average identified the
optimal model after completing 50.0% of the possible
fold evaluations. Note that this latter outcome conforms
precisely with the theoretically expected average for the
standard method described in Section 4. Put differently,
the greedy k-fold method identified the best-performing
ML model among the set of candidate models more than
twice as quickly on average than the standard k-fold
method. As an illustrative example of this major
difference in performance, Figure 5 below depicts the
average search time of the greedy vs. standard k-fold
methods using a decision tree classifier on the
Wisconsin Diagnostic Breast Cancer dataset.

The results presented in Table 1 and Figure 5 reflect
the comparative performance of the standard and greedy
k-fold methods across a variety of datasets, ML
algorithms, and values of k. Those results, however,
were computed for all of the possible values of n that
were used in the experiments. It is, of course, possible
to gain more detailed insights by disaggregating these
results and considering how various values of n impact
the comparative performance of the standard and greedy
k-fold methods. While space limitations make it
infeasible to visualize the comparative performance of

these two different cross validation methods for all 135
unique combinations of datasets, ML algorithms, values
of k, and values of n used in the experiments, a
representative example is provided in Figure 6 below.
This figure shows how the greedy k-fold method
performed against the standard (baseline) method for
varying numbers of n candidate models on the Boston
House Prices dataset at values of 𝑘𝑘 ∈ {5, 10, 20}.

Figure 5. Comparative performance of the

greedy and standard k-fold methods.

Figure 6. Greedy k-fold method performance

for varying numbers of candidate models.

Regardless of the dataset, ML algorithm, number of

folds, or number of candidate models, the greedy k-fold
method was observed to consistently outperform the

Page 7533

standard k-fold method on average during the
experiments. In the absence of counterevidence, these
observations provide support for the notion that the
greedy k-fold method is generally superior to the
standard k-fold method in quickly identifying optimal
ML models, regardless of the dataset, ML algorithm,
number of folds, or number of candidate models. Since
the data suggest that the greedy method is, on average,
approximately twice as efficient as the standard method
in terms of its ability to quickly locate top-performing
ML models, it is recommended that the greedy method
be given serious consideration in any machine learning
hyperparameter tuning / model selection scenario,
particularly when an ML practitioner is operating under
the common constraint of a computational budget.

6. Summary, limitations, & future research
This paper developed and presented a greedy

algorithm for performing k-fold cross validation and
showed through a large set of experiments that the
greedy method clearly and substantially outperforms the
standard k-fold method in its ability to quickly identify
optimal or near-optimal machine learning models. More
specifically, given a set of candidate models, the greedy
k-fold method will, on average, identify the optimal
model approximately twice as quickly as the standard
method. This means that given a fixed computational
budget, approximately twice as many candidate models
could be considered by using the greedy k-fold method
than could otherwise be considered by using the
standard method. Alternatively, given a fixed number of
candidate models, the greedy k-fold method would
allow the best-performing models in the set to be
identified using just half of the computational budget
that would be required to achieve the same results using
the standard method. From a practical perspective, these
properties of the greedy k-fold method can translate to
huge savings for companies by reducing the time and
money required to develop and train ML-based products
and services, thereby yielding substantial gains in
competitive advantage. The greedy k-fold method can
also provide major benefits to AI and machine learning
researchers who are developing and performing
hyperparameter optimization on complex ML models.

As with all research, this project has several
limitations that merit acknowledgement. First, although
efforts were taken to test the greedy k-fold algorithm on
a variety of datasets, those datasets were all relatively
small, with the largest dataset containing just 1,797
cases and 64 features. There is some indication among
the results presented in Table 1 that the performance of
the greedy k-fold method may improve on larger
datasets (possibly due to less variation among the
distributions of each fold), but this notion was not
explicitly tested in the current study. Second, while the

greedy method was subjected to three different ML
algorithms in this project, all of those algorithms were
classifiers. There is no obvious a priori reason to expect
that the greedy k-fold method would perform differently
for ML algorithms that produce ordinal or continuous
predictions. Nevertheless, such algorithms were not
used in the current study, which limits the
generalizability of the results. Finally, the performance
of the greedy k-fold method described in the current
paper was compared only against the standard k-fold
method in terms of its ability to quickly identify an
optimal model. While the greedy method is unique in
terms of its focus on cross validation as a means of
accelerating the hyperparameter optimization / ML
model selection process, many other approaches to
hyperparameter optimization have been proposed, and
the greedy k-fold method has not yet been compared to
those methods.

Ultimately, this paper represents but a small first
step in investigating greedy k-fold cross validation and
its potential as an accelerant for ML hyperparameter
optimization and model selection, and much remains to
be done. To be sure, the greedy k-fold method described
in this study is the simplest possible version of the
algorithm, and more advanced and better performing
algorithms based on the same principles may certainly
be feasible. For example, could a more effective
approach be developed to handle the exploration /
exploitation dilemma? Could the distributional
properties of a model’s folds be utilized as a basis for
early abandonment of unpromising models? Can the
greedy k-fold method be combined with other
approaches designed to accelerate hyperparameter
optimization in order to identify optimal ML models
even more quickly? All of these questions remain to be
answered and hence represent fruitful opportunities for
future research in this area. For now, we must content
ourselves with the knowledge that the greedy k-fold
cross validation algorithm appears to be highly
promising with respect to its ability to outperform the
standard k-fold approach, which itself has undeniably
been a mainstay of the ML community for several
decades.

7. References
[1] Duong, T.N.B., and Sang, N.Q., "Distributed Machine

Learning on IAAS Clouds", 5th IEEE International
Conference on Cloud Computing and Intelligence
Systems (CCIS), 2018, pp. 58-62.

[2] Lwakatare, L.E., Raj, A., Crnkovic, I., Bosch, J., and
Olsson, H.H., "Large-Scale Machine Learning Systems
in Real-World Industrial Settings: A Review of
Challenges and Solutions", Information and Software
Technology, 127, 2020, pp. 106368.

[3] Feurer, M., and Hutter, F., "Hyperparameter
Optimization", in (Hutter, F., Kotthoff, L., and

Page 7534

Vanschoren, J., 'eds.'): Automated Machine Learning:
Methods, Systems, Challenges, Springer, Cham,
Switzerland, 2019, pp. 3-33.

[4] Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-
Tzur, J., Hardt, M., Recht, B., and Talwalkar, A., "A
System for Massively Parallel Hyperparameter Tuning",
3rd Machine Learning and Systems Conference, 2020

[5] Snoek, J., Larochelle, H., and Adams, R.P., "Practical
Bayesian Optimization of Machine Learning
Algorithms", Advances in neural information processing
systems, 25, 2012, pp. 2951-2959.

[6] Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H.,
and Patton, R.M., "Optimizing Deep Learning Hyper-
Parameters Through an Evolutionary Algorithm",
Workshop on Machine Learning in High-Performance
Computing Environments, 2015, pp. 1-5.

[7] Li, L., Jamieson, K., Desalvo, G., Rostamizadeh, A., and
Talwalkar, A., "Hyperband: A Novel Bandit-Based
Approach to Hyperparameter Optimization", The Journal
of Machine Learning Research, 18(1), 2017, pp. 6765-
6816.

[8] Bengio, Y., "Gradient-Based Optimization of
Hyperparameters", Neural computation, 12(8), 2000, pp.
1889-1900.

[9] Franceschi, L., Donini, M., Frasconi, P., and Pontil, M.,
"Forward and Reverse Gradient-Based Hyperparameter
Optimization", 34th International Conference on
Machine Learning, 2017, pp. 1165-1173.

[10] Vanwinckelen, G., and Blockeel, H., "Look Before You
Leap: Some Insights into Learner Evaluation with Cross-
Validation", European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in
Databases, Workshop on Statistically Sound Data
Mining, 2014, pp. 3-20.

[11] Kumar, R., Machine Learning Quick Reference: Quick
and Essential Machine Learning Hacks for Training
Smart Data Models, Packt Publishing, Birmingham, UK,
2019.

[12] Agrawal, T., Hyperparameter Optimization in Machine
Learning: Make Your Machine Learning and Deep
Learning Models More Efficient, Apress, New York,
NY, 2020.

[13] Kohavi, R., and John, G.H., "Automatic Parameter
Selection by Minimizing Estimated Error", 12th
International Conference on Machine Learning, 1995, pp.
304-312.

[14] Olson, R.S., Cava, W.L., Mustahsan, Z., Varik, A., and
Moore, J.H., "Data-Driven Advice for Applying Machine
Learning to Bioinformatics Problems", Pacific
Symposium on Biocomputing, 2018, pp. 192-203.

[15] Bergstra, J., and Bengio, Y., "Random Search for Hyper-
Parameter Optimization", Journal of machine learning
research, 13(1), 2012, pp. 281-305.

[16] Soper, D.S., "On the Need for Random Baseline
Comparisons in Metaheuristic Search", 51st Hawaii
International Conference on System Sciences, 2018, pp.
1288-1297.

[17] Brownlee, J., Probability for Machine Learning, Machine
Learning Mastery Pty. Ltd., Vermont, Australia, 2019.

[18] Iba, H., Evolutionary Approach to Machine Learning and
Deep Neural Networks, Springer, Gateway East,
Singapore, 2018.

[19] Jamieson, K., and Talwalkar, A., "Non-Stochastic Best
Arm Identification and Hyperparameter Optimization",
8th International Conference on Artificial Intelligence
and Statistics, 2016, pp. 240-248.

[20] Karnin, Z., Koren, T., and Somekh, O., "Almost Optimal
Exploration in Multi-Armed Bandits", 30th International
Conference on Machine Learning, 2013, pp. 1238-1246.

[21] Larsen, J., Hansen, L.K., Svarer, C., and Ohlsson, M.,
"Design and Regularization of Neural Networks: The
Optimal Use of a Validation Set", Neural Networks for
Signal Processing VI. Proceedings of the 1996 IEEE
Signal Processing Society Workshop, 1996, pp. 62-71.

[22] Maclaurin, D., Duvenaud, D., and Adams, R., "Gradient-
Based Hyperparameter Optimization Through Reversible
Learning", 32nd International Conference on Machine
Learning, 2015, pp. 2113-2122.

[23] Pedregosa, F., "Hyperparameter Optimization with
Approximate Gradient", 33rd International Conference
on Machine Learning, 2016, pp. 737-746.

[24] Duchi, J., Hazan, E., and Singer, Y., "Adaptive
Subgradient Methods for Online Learning and Stochastic
Optimization", Journal of machine learning research, 12,
2011, pp. 2121-2159.

[25] Kingma, D.P., and Ba, J.L., "Adam: A Method for
Stochastic Optimization", 3rd International Conference
on Learning Representations, 2015

[26] Shalev-Shwartz, S., and Ben-David, S., Understanding
Machine Learning: From Theory to Algorithms,
Cambridge University Press, Cambridge, UK, 2014.

[27] Allen, D.M., "The Relationship Between Variable
Selection and Data Agumentation and a Method for
Prediction", technometrics, 16(1), 1974, pp. 125-127.

[28] Stone, M., "Cross-Validatory Choice and Assessment of
Statistical Predictions", Journal of the Royal Statistical
Society: Series B (Methodological), 36(2), 1974, pp. 111-
133.

[29] Cawley, G.C., and Talbot, N.L., "On Over-Fitting in
Model Selection and Subsequent Selection Bias in
Performance Evaluation", The Journal of Machine
Learning Research, 11, 2010, pp. 2079-2107.

[30] Das, S., and Cakmak, U.M., Hands-On Automated
Machine Learning, Packt Publishing Ltd., Birmingham,
UK, 2018.

[31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., and Dubourg, V., "Scikit-Learn: Machine
Learning in Python", Journal of machine learning
research, 12, 2011, pp. 2825-2830.

[32] Welch, B.L., "The Generalization of "Student's" Problem
When Several Different Population Variances are
Involved", Biometrika, 34(1-2), 1947, pp. 28-35.

Page 7535

	1. Introduction
	2. Related work
	2.1 Hyperparameter optimization & model selection
	2.2 Current hyperparameter optimization methods
	2.3 k-fold cross validation & ML model selection
	2.4 Model selection

	3. Greedy k-fold cross validation
	4. Evaluative experiments
	5. Results & discussion
	6. Summary, limitations, & future research
	7. References

