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Abstract: Selecting a final machine learning (ML) model typically occurs after a process of hyper-
parameter optimization in which many candidate models with varying structural properties and
algorithmic settings are evaluated and compared. Evaluating each candidate model commonly relies
on k-fold cross validation, wherein the data are randomly subdivided into k folds, with each fold
being iteratively used as a validation set for a model that has been trained using the remaining folds.
While many research studies have sought to accelerate ML model selection by applying metaheuristic
and other search methods to the hyperparameter space, no consideration has been given to the k-fold
cross validation process itself as a means of rapidly identifying the best-performing model. The
current study rectifies this oversight by introducing a greedy k-fold cross validation method and
demonstrating that greedy k-fold cross validation can vastly reduce the average time required to
identify the best-performing model when given a fixed computational budget and a set of candidate
models. This improved search time is shown to hold across a variety of ML algorithms and real-world
datasets. For scenarios without a computational budget, this paper also introduces an early stopping
algorithm based on the greedy cross validation method. The greedy early stopping method is shown
to outperform a competing, state-of-the-art early stopping method both in terms of search time and
the quality of the ML models selected by the algorithm. Since hyperparameter optimization is among
the most time-consuming, computationally intensive, and monetarily expensive tasks in the broader
process of developing ML-based solutions, the ability to rapidly identify optimal machine learning
models using greedy cross validation has obvious and substantial benefits to organizations and
researchers alike.

Keywords: greedy cross validation; greedy early stopping; hyperparameter optimization; machine
learning; model selection

1. Introduction

Organizational development and adoption of artificial intelligence (AI) and machine
learning (ML) technologies has exploded in popularity in recent years, with the total
business value and total global spending on these technologies expected to reach USD
3.9 trillion and USD 77.6 billion by 2022, respectively [1,2]. One of the most significant
drivers of the rapid rise of AI and ML has been cloud computing, through which the
vast computational resources required to train and evaluate complex machine learning
models have become widely available on an elastic, as-needed basis [3]. Despite the
widespread availability of cloud-based computational resources, both the execution time
required to train today’s complex, state-of-the-art ML models and the cloud computing
costs associated with training those models remain major obstacles in many real-world
scientific, governmental, and commercial use cases [4]. Furthermore, this problem is often
made exponentially worse by the need to perform hyperparameter optimization, wherein
a large number of candidate ML models with varying hyperparameter settings are trained
and evaluated in an effort to find the best-performing model [5,6]. Tools and methods
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aimed at reducing the computational workload and associated monetary costs of arriving
at a final, best-performing ML model are therefore highly desirable.

The scope of the model search problem may perhaps be best understood by considering
a well-known case from the ML literature. In their highly cited paper, Krizhevsky et al. [7]
described the development and training of the AlexNet deep convolutional neural network
(CNN), which achieved state-of-the-art computer vision performance in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). Despite having just eight trainable
layers and 60 million parameters in their CNN, and despite using multiple GPUs to
accelerate the training process, these authors reported that five to six days were required to
train a single model. Just a few years later, it was not uncommon for CNNs competing in
the ILSVRC to contain hundreds or even thousands of layers [8,9]. Training and evaluating
many candidate models of this size and complexity would obviously require a great deal
of time, even using today’s most advanced GPUs or tensor processing units.

Since evaluating a large number of ML models can be very time-consuming and
expensive, many researchers have considered the important problem of how to find an
optimal or near-optimal ML model among the set of all possible models as quickly as
possible. Unfortunately, many of the hyperparameters involved in ML model training
are real-valued, which implies that there is often an infinite number of possible models
that theoretically could be evaluated for a particular ML scenario. Recognizing that this
situation clearly makes a brute-force model search infeasible, a considerable variety of
approaches have been proposed for searching a finite subset of the possible model space.
The simplest and most common of these methods involve performing a grid search or a
random search, with the latter approach serving as a natural baseline for inter-method
performance comparisons [5]. Several more sophisticated guided search methods have
also been proposed, including Bayesian methods [10], population-based approaches such
as evolutionary optimization [11], early stopping methods [12,13], and hypergradient
optimization [14,15], etc. Despite the different rules and theories upon which these guided
search methods are based, all share a common general strategy: To identify relationships
between hyperparameter values and a performance metric, and then use that knowledge
to evaluate models located within promising regions of the search space. This general
strategy for performing hyperparameter optimization is illustrated in Figure 1 below.
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With respect to the general approach to hyperparameter optimization depicted in
Figure 1, the factors that distinguish one guided search method from another are (1)
variations in how tuples of hyperparameters are selected, (2) which stopping conditions
are used, and (3) the information about the relationships between the hyperparameters
and the performance metric that is used to guide the search process. Together, these three
factors are respectively represented by items A, C, and D in Figure 1. What remains, then,
is item B, which represents the process of training and evaluating one or more candidate
models, with each candidate model corresponding to a tuple of hyperparameter values
from item A. Evaluating the performance of each candidate model can be accomplished via
any statistically defensible process, regardless of the specific guided search method being
used. In practice, the task of evaluating an ML model’s performance is most commonly
carried out using k-fold cross validation [16], wherein the data are randomly subdivided
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into k folds, with each fold being iteratively used as a validation set for a model that has
been trained using the remaining folds [17].

In contrast to all extant guided search methods for hyperparameter optimization,
the current study takes a completely different approach by considering the ML model
training and evaluation process itself as a means of accelerating the search for the best-
performing model. Put differently, rather than trying to find promising regions within
the hyperparameter space, this study instead focuses on the process of measuring model
performance as a way of reducing the time and costs associated with evaluating a large
number of candidate ML models. Existing methods of hyperparameter optimization
and ML model selection treat cross validation as a simple “black box” process in the
sense that they are unconcerned with cross validation itself, and instead are interested
only in the output of the cross-validation process. By contrast, the greedy k-fold method
proposed herein focuses directly and exclusively on what is happening inside this black
box; i.e., the cross validation process itself. With respect to Figure 1, the current study is
thus primarily concerned with item B, which, as noted in the discussion above, has been
generally overlooked as a means of performing rapid hyperparameter optimization. Given
that the ML model performance is most commonly carried out using k-fold cross validation,
this paper explicitly seeks to pioneer a new approach to hyperparameter optimization by
inquiring into the following general research question:

Research Question: When performing hyperparameter optimization with k-fold
cross validation, is it possible to improve the average time required to find
the best-performing model by taking a greedy approach to the cross-validation
process itself?

The balance of this paper is organized as follows: Section 2 provides a review of the
related literature by describing current methods of performing hyperparameter optimiza-
tion, as well as the standard approach to k-fold cross validation. The greedy k-fold cross
validation algorithm that forms the core of the current study is introduced in Section 3,
along with a discussion of the algorithm’s properties. Section 3 also introduces an early
stopping version of the greedy cross validation algorithm that can be used to quickly
identify near-optimal ML models in scenarios that do not involve a computational budget
constraint. Section 4 describes two sets of experiments that were undertaken to evaluate
the performance of the greedy k-fold method. The first of these evaluates the greedy k-fold
method relative to the baseline standard k-fold method, with the experiments comparing
the ML model search performance of the greedy and standard methods across a variety of
different ML algorithms and real-world datasets. The second set of experiments compares
the performance of the early stopping version of the greedy cross validation algorithm
against a competing, state-of-the-art early stopping algorithm in terms of both search time
and the quality of the selected ML models. The outcomes of the evaluative experiments are
presented and discussed in Section 5, with the results indicating that (1) in comparison to
the standard k-fold method, greedy k-fold cross validation can vastly reduce the average
time required to identify the best-performing ML model among a set of candidate mod-
els, and (2) in comparison to the state-of-the-art successive halving algorithm, the early
stopping version of the greedy cross validation algorithm generally identifies superior
ML models in less time. The paper concludes with Section 6, which provides a brief
summary, describes the limitations of the work, and offers a few final remarks about future
research directions.

2. Related Work

The primary topic of the current study resides at the intersection of two key concepts
from the machine learning literature: (1) Hyperparameter optimization, and (2) k-fold cross
validation. Since a familiarity with both of these concepts is a necessary prerequisite for
understanding the greedy k-fold cross validation algorithms proposed in Section 3, reviews
of both hyperparameter optimization and the standard method of performing k-fold cross
validation are provided below.
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2.1. Hyperparameter Optimization and Model Selection

When developing ML-based solutions, it is standard practice to evaluate many differ-
ent ML models with a goal of identifying the model that yields the best possible perfor-
mance for the problem at hand [18]. The term model as used here refers to a combination of
a specific ML algorithm and the specific values that have been chosen for the algorithm’s
tunable or definable parameters. These parameters can be structural—for example, the
number of hidden layers or the number of nodes per layer in a neural network—or they
can be algorithmic parameters that control the learning process, such as the mini-batch size
or the learning rate. Collectively, these structural and algorithmic parameters are referred
to as the model’s hyperparameters, and the task of searching for the best possible combina-
tion of hyperparameter settings for a particular problem is referred to as hyperparameter
optimization [5]. Evaluating many combinations of ML algorithms and hyperparameter
settings (i.e., evaluating many models) is typically necessary since research has shown
that no single ML algorithm or set of hyperparameter settings yields optimal results for
all possible datasets or problem domains [19,20]. Indeed, a particular combination of an
ML algorithm and a set of hyperparameter settings may perform very well in one scenario
while performing very poorly in another scenario. Since every ML model has hyperpa-
rameters, and since achieving the best-possible performance is commonly of paramount
importance, hyperparameter optimization has become an indispensable step in the broader
process of developing an ML-based solution.

2.2. Current Hyperparameter Optimization Methods

Given the necessity of evaluating many candidate ML models via the hyperparameter
optimization process, a review of the most common contemporary hyperparameter opti-
mization methods is both appropriate and useful in the context of the current study. As such,
the following subsections respectively review the grid search, random search, Bayesian,
evolutionary, early stopping, and gradient-based hyperparameter optimization methods.

2.2.1. Grid Search

Grid search has traditionally been one of the most widely used methods of performing
hyperparameter optimization among machine learning practitioners [21]. In a grid search,
the ML practitioner first specifies a finite set of possible values for each hyperparameter,
after which the grid search algorithm performs an exhaustive search by evaluating the
Cartesian product of these sets of hyperparameter values [5]. A simple example of a grid
search is illustrated in Figure 2 below.
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The grid search depicted in Figure 2 includes just two hyperparameters. Since each
hyperparameter in the figure has three possible values, a total of nine different combina-
tions of hyperparameter values (i.e., nine different candidate models) would need to be
evaluated in this particular scenario in order to find the best-performing model. Different
hyperparameters can, of course, have different domains. Whereas some hyperparameters
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might be categorical (e.g., which regularization method to use), other hyperparameters
might be Boolean-valued (e.g., whether or not to learn prior probabilities), integer-valued
(e.g., the number of layers in a neural network) or real-valued (e.g., the ML algorithm’s
learning rate). In the case of the latter, grid search naturally requires the ML practitioner
to discretize real-valued hyperparameters prior to initiating the search process. As with
all hyperparameter optimization methods, the ML practitioner must also instruct the grid
search algorithm to use a specific performance metric when evaluating a set of candi-
date models, with overall model performance typically being determined via k-fold cross
validation [16]. Finally, it is important to note that grid search suffers from the curse of
dimensionality [21]. If, for example, a third hyperparameter with three possible values
were added to the simple grid search depicted in Figure 2, the number of candidate models
would grow exponentially from 32 = 9 models to 33 = 27 models. Since ML algorithms
commonly involve a substantial number of hyperparameters with many possible values
for each hyperparameter, it can be readily understood how hyperparameter optimization
tasks can scale very quickly to hundreds or thousands of candidate models.

2.2.2. Random Search

Rather than iterating over the Cartesian product of all of the sets of hyperparameter
values defined by the ML practitioner, a random search proceeds by evaluating ML models
whose hyperparameter values have been chosen randomly. As with a grid search, the
random search method can be readily applied to discrete, continuous or mixed hyper-
parameter spaces. For integer-valued or real-valued hyperparameters with unbounded
domains, the ML practitioner must typically exercise some judgment by specifying reason-
able intervals from which the values for such hyperparameters will be randomly selected.
It is common practice when conducting a random search to establish a computational bud-
get for the search process, in which the search for the best-performing model continues
until a certain number of models have been evaluated or a certain amount of time has
elapsed [5]. A simple example of a random search for an ML scenario involving two
real-valued hyperparameters with a computational budget of nine models is illustrated in
Figure 3 below.
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Random search provides several important advantages when compared to grid search.
First, in their highly cited paper, Bergstra and Bengio [21] demonstrated both theoretically
and empirically that the random search method is more efficient than the grid search
method as a basis for performing hyperparameter optimization. Random search also lends
itself very well to parallelization, and supports a more flexible allocation of computational
resources than grid search [5]. Furthermore, the distribution from which hyperparameter
values are drawn in a random search need not be uniform. Indeed, prior knowledge
about the likely usefulness of certain values for a specific hyperparameter within a given
ML problem domain can be readily incorporated into a random search by specifying a
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particular probability distribution from which the random variates for that hyperparameter
will be drawn.

Finally, the random search method serves as an excellent baseline against which
to compare the performance of other hyperparameter optimization methods. There are
several reasons for this. First, the random search method does not make any assumptions
about the specific ML problem domain or hyperparameter space in which it is operating.
Similarly, the random search method does not make or rely on any assumptions about the
specific ML algorithm whose hyperparameters it is attempting to optimize. Lastly, given
a sufficient computational budget, a random search will eventually identify a model in
the hyperparameter space whose distance from the globally optimal model is within any
arbitrarily chosen degree of precision. Since random search has been shown to outperform
many sophisticated search algorithms in scenarios involving a fixed computational budget
and no prior knowledge of the hyperparameter space, using the performance of a random
search as a comparative baseline is critical when evaluating the performance of new
metaheuristic search algorithms [22].

2.2.3. Bayesian Optimization

In the context of hyperparameter optimization, Bayesian optimization is an iterative
method that relies on Bayes’s Theorem to guide the hyperparameter search process [23].
This method works via a combination of two primary elements: (1) A probabilistic surrogate
model, and (2) an acquisition function that is based on the surrogate model [5]. During
each iteration, the surrogate model is first updated using the actual observations about
the relationship between the hyperparameters and the performance metric that have
thus far been obtained, yielding a posterior distribution. The acquisition function is then
maximized to identify the most promising tuple of hyperparameter values to evaluate next.
A candidate model that uses the most promising tuple of hyperparameter values is then
evaluated in the actual search space, with the results being used to update the surrogate
model for the next iteration. This process repeats until a stopping condition is met, such as
the exhaustion of a computational budget or a sufficiently small difference in candidate
model performance from one iteration to the next.

One of the characteristics that makes Bayesian optimization attractive to many ML
practitioners is its ability to efficiently produce estimates of how well different models
will perform without needing to actually evaluate those models. Using the acquisition
function and the surrogate model to estimate the performance of candidate hyperparameter
configurations is typically much less computationally expensive than evaluating those
hyperparameter configurations directly. The Bayesian optimization algorithm thus capital-
izes on what it has learned in order to actually evaluate only those models that it believes
to be most promising, while ignoring regions of the search space that it believes to be
less promising. The success of this method, of course, naturally depends on how well the
surrogate model captures the true relationship between the hyperparameter space and the
performance metric. The Bayesian method of performing hyperparameter optimization is
illustrated in Figure 4 below.
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2.2.4. Evolutionary Optimization

As the name suggests, evolutionary optimization is an iterative method of performing
hyperparameter optimization that relies on principles adopted from the biological pro-
cess of evolution, such as mutation, recombination, adaptation to the environment, and
survival of the fittest [24]. The evolutionary optimization process begins by creating a
population consisting of a reasonably large number of randomly generated hyperparame-
ter configurations. Next, the performance of each of these members of the population is
evaluated in light of the data and the chosen ML algorithm, typically by means of k-fold
cross validation. The tuples of hyperparameter values are then ranked according to their
observed levels of performance. Next, the worst-performing members of the population
are discarded and replaced by new members, with the hyperparameter values for the new
members being generated by means of mutation or recombination of the hyperparameter
values of the best-performing members of the population. Finally, the performance of each
of the newly generated members is evaluated, and the population is re-ranked. These
discarding, replacement, and re-ranking tasks are repeated until a stopping condition is
met, such as the exhaustion of a computational budget or a sufficiently small difference in
the performance of the best-performing candidate model from one iteration to the next. In
this way, the population of candidate models steadily evolves towards an optimal solution.
As with random search, the evolutionary optimization method lends itself very well to
parallelization [25]. The evolutionary method of performing hyperparameter optimization
is illustrated in Figure 5 below.
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2.2.5. Early Stopping Optimization

Early stopping optimization is an approach to hyperparameter optimization that relies
on a strategy of pruning a large number of unpromising hyperparameter configurations as
quickly as possible, thus allowing a steadily increasing proportion of the available compu-
tational budget to be directed at evaluating more promising hyperparameter configurations
in greater detail. Several variants of the early stopping method have been proposed in
recent years, notably including successive halving [13,26] (which figures prominently later
in this paper), asynchronous successive halving [6], and Hyperband [12]. While each of
these early stopping algorithms has distinctive characteristics, the core concepts underlying
their operation are consistent. Beginning with a fixed computational budget and a large,
randomly generated set of candidate models, the early stopping method first consumes a
relatively small proportion of the computational budget by performing a quick, shallow
evaluation of each candidate model. Next, the worst-performing models are discarded
(i.e., any further consideration of the worst-performing models is stopped early), and a
larger proportion of the computational budget is allocated towards evaluating the remain-
ing candidate models in greater detail. This process is then repeated until only a single
candidate model remains. Given a fixed computational budget, careful consideration must
naturally be given to the tradeoff between the number of candidate models in the initial set
and how aggressively the early stopping method prunes poorly performing models during
each iteration. A graphical illustration of the early stopping approach to hyperparameter
optimization is provided in Figure 6 below.
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2.2.6. Hypergradient Optimization

Hypergradient optimization is a general term for the collection of methods that perform
hyperparameter optimization by computing a gradient with respect to a ML model’s
hyperparameters (i.e., a hypergradient) and then updating the hyperparameter values
by using gradient descent [14,15,27–29]. Gradient descent and its variants—including
stochastic gradient descent, gradient descent with momentum, AdaGrad, Adam, etc.—have
been used for several decades as a basis for computing elementary parameter values for a
wide variety of ML algorithms [30–32]. Following Maclaurin et al. [28], the term elementary
parameter is used herein to unambiguously distinguish a machine learning model’s regular
parameters from its hyperparameters. Rather than using gradient descent exclusively for
the purpose of optimizing a machine learning model’s elementary parameters, however,
hypergradient optimization leverages gradient descent as a means of optimizing the
model’s hyperparameters, as well.

Hypergradient optimization can be understood as a two-stage or bi-level optimization
problem, in which an inner layer of optimization is used to compute values for the ML
model’s elementary parameters, while an outer layer of optimization is used to compute
values for the model’s hyperparameters [15]. After randomly initializing the ML model’s
hyperparameters, hypergradient optimization begins using the training data to perform
the initial iteration of optimization on the model’s elementary parameters, typically with
a view towards minimizing a cost function. The performance of the model is then eval-
uated using the validation data. If the candidate model does not satisfy the stopping
criterion, then a gradient is next computed, not with respect to the ML model’s elementary
parameters, but instead with respect to the model’s vector of hyperparameters. Gradient
descent or one of its variants is then applied in order to update the values of the model’s
hyperparameters. This two-stage optimization process repeats until the stopping criterion
is met. Although hypergradient optimization has shown itself to be highly useful in certain
situations, its reliance on gradient descent requires the objective function for the hyper-
parameters to be differentiable (or at least subdifferentiable). Since many ML algorithms
rely on hyperparameters that are not real-valued, this requirement makes the hypergradi-
ent approach unsuitable for many hyperparameter optimization problems. The general
method of performing hyperparameter optimization via gradient descent is illustrated in
Figure 7 below.

2.2.7. Summary of Current Hyperparameter Optimization Methods

Grid search and random search notwithstanding, the conceptual paradigm employed
by the other existing methods of ML model selection and hyperparameter optimization
described above is to focus on the relationship between the values of the hyperparameters
and the values of the metric that is being used to evaluate the performance of each candidate
model. More specifically, these hyperparameter optimization methods assume the presence
of an underlying but unknown objective function that maps the hyperparameter values
for the current ML algorithm to the value of the performance metric. The general goal
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of such methods, then, is to accumulate information about the nature of the objective
function, and then exploit that information to select hyperparameter values that will yield
a model whose performance is as close to the global optimum as possible. The greedy
method of performing k-fold cross validation described in Section 3 differs from all of
these extant guided search methods in that it does not actively compute or choose new
hyperparameter values to evaluate as the optimization process unfolds. It also does not
treat cross validation as a “black box” process for which the only item of interest is the
resulting model performance value. Rather than treating cross validation as a black box,
the greedy k-fold method intentionally focuses on the cross-validation process itself, and
in so doing demonstrates that the model evaluation task can be exploited as a means of
accelerating hyperparameter optimization and ML model selection.
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2.3. Standard k-Fold Cross Validation and Model Selection Methods

This subsection provides a brief review of the standard methods of performing k-fold
cross validation and ML model selection. Understanding the standard k-fold and model
selection processes is important since they serve as the basis of the greedy k-fold cross
validation algorithm described in Section 3.

2.3.1. Standard k-Fold Cross Validation

Broadly, k-fold cross validation is a technique for judging how well a model will
generalize to scenarios involving novel data that were not considered or “seen” when the
model was being trained [33,34]. In the context of machine learning, k-fold cross validation
has become the primary method used by ML practitioners when evaluating candidate mod-
els [16], not only due to the method’s utility as an estimator of generalization performance,
but also due to its ability to reveal problems with selection bias and overfitting [35]. The
standard k-fold process involves splitting the data into k subsets (called folds), with each fold
being iteratively used as a validation set for a candidate model that has been trained using
the data from the remaining folds [17]. Each fold contains an equal or approximately equal
number of cases, with fold membership typically being assigned randomly. If the dataset
is relatively small, stratified random sampling may also be used in order to ensure that the
target variable is approximately identically distributed in each fold [36]. After splitting the
data into k folds, the candidate model is next subjected to an iterative evaluation process.
During each evaluative iteration, k-1 of the folds are used to train the candidate model,
with the model’s performance being measured using the remaining fold. This process is
repeated until each fold has been used exactly once as a validation set, yielding a total
of k iterations of training and validation for each candidate model. Finally, the model’s
overall performance θ is estimated as the mean of the performance values obtained from
each iteration, as shown in Equation (1). The standard method of performing k-fold cross
validation is illustrated in Figure 8.

θ =
1
k ∑k

i=1 θi (1)
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2.3.2. Model Selection

Given a specific problem scenario and machine learning algorithm, the most widely
used strategy for identifying and selecting the best-performing ML model is to conduct
hyperparameter optimization using k-fold cross validation [35,37]. The set of candidate
models to be evaluated may be defined in advance (e.g., when using a grid search, random
search or early stopping search) or may be defined dynamically as the model search
process unfolds (e.g., when using the Bayesian, evolutionary or hypergradient guided
search methods described previously). After evaluating as many models as possible given
the constraints of the computational budget (or when a stopping criterion is met in the
absence of a computational budget), the candidate model with the most desirable overall
performance characteristics is chosen as the final model. A wide variety of performance
metrics are feasible for the model selection process (e.g., best classification accuracy, lowest
mean squared error, etc.), with the choice of metric being situationally dependent on the
specific ML method and the specific task at hand. The standard approach to selecting an
optimal ML model via k-fold cross validation for a scenario involving a predefined set of
candidate models is described in Algorithm 1 below.

Algorithm 1. Standard approach to ML model selection via k-fold cross validation.

Input: M (set of candidate models), k (number of folds), D (dataset), b (computational budget)
Output: Best-performing, fully evaluated model
split D into k folds, s.t. D = {d1, d2, . . . , dk}
η← 0 (number of fold evaluations completed)
while η < b do (while the computational budget is not exhausted)

m = next model in M
for j = 1 to k do

train m using all folds di ∈ D where i 6= j
evaluate performance of m using fold dj
Pm ←mean performance of m for folds {d1, . . . , dj}
η← η + 1
if η ≥ b then break (if the computational budget is exhausted)

end for
end while
return best, fully evaluated m ∈M, per P

Note that the standard k-fold algorithm can be readily modified to support any of
the guided search methods described previously. This can be accomplished by eliminat-
ing the assumption that the set of candidate models is known in advance, and instead
implementing a framework in which the next model to be evaluated is determined at
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runtime based on what has been learned about the relationship between the values of the
hyperparameters and the performance metric. A graphical representation of the standard
k-fold cross validation algorithm being used to select the best-performing candidate model
is shown in Figure 9 below.
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As shown in the figure above, the combination of n candidate models and k evaluative
iterations can be thought of as a table, with each column representing one of the k evaluative
iterations and each row representing a candidate model. The overall progress that has
been made towards completing the evaluation of each candidate model is indicated by the
color of the table cells, with dark-colored cells indicating that the evaluative iteration has
been completed for the corresponding fold and model. Evaluation of candidate models
thus proceeds one fold at a time, from left to right, top to bottom until the computational
budget has been exhausted, at which time the fully evaluated candidate model with the
best overall performance is chosen as the final model. Using this conceptual framework,
it is convenient to discuss the total amount of work involved in the ML model selection
process in terms of the number of folds evaluated, where a “fold evaluation” refers to a
fold being used to validate a candidate model that has been trained with the remaining
folds. The maximum number of folds that could possibly be evaluated in the ML model
selection process is thus nk, with reasonable values for a computational budget b falling in
the interval k ≤ b ≤ nk.

3. Greedy k-Fold Cross Validation

The two versions of the greedy k-fold cross validation algorithm proposed in this
section take a completely different approach to hyperparameter optimization than any
of the guided search methods described previously. Specifically, whereas these existing
methods seek to accelerate the ML model search process by identifying and searching
promising areas within the hyperparameter space, the general approach of the greedy k-
fold method is to focus on the k-fold cross-validation process itself as a means of achieving
rapid hyperparameter optimization and model selection. At a fundamental level, the
greedy k-fold cross validation method proposed here differs from the standard k-fold cross
validation process in just one important way. In the standard approach, all of the folds for
a given ML model are considered as validation sets in sequential order, one after another,
thus allowing the overall performance of the model to be computed before the algorithm
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moves on to the next candidate model (i.e., within-model evaluation). By contrast, greedy
k-fold cross validation considers a sequence of folds that originate from different ML models,
with the specific model and validation fold to use next being greedily chosen at runtime.
Put differently, the standard approach to k-fold cross validation can be thought of as relying
on a sequence of within-model fold evaluations, while the greedy approach to k-fold cross
validation can be thought of as relying on a sequence of between-model fold evaluations.

The greedy k-fold cross validation algorithm begins by obtaining a partial performance
estimate for each candidate model using just the first fold as a validation set, after having
trained the model using the remaining folds. The model with the best initial performance is
then identified, after which the second fold for that model is used as a validation set (with
the remaining folds naturally being used as the training set). The performance estimate for
the model is then updated to reflect the mean performance observed after having tested
the model using the first two folds as validation sets. The model with the best mean
performance at that moment is then identified, after which its next available fold is used as
a validation set and the model’s mean performance is updated. This process repeats until
either the computational budget has been exhausted or an early stopping criterion has
been met, at which time the algorithm returns the best, fully evaluated model. The process
of selecting an optimal ML model using greedy k-fold cross validation when operating
under the constraint of a computational budget is described in Algorithm 2 below.

Algorithm 2. ML model selection using greedy k-fold cross validation with a
computational budget.

Input: M (set of candidate models), k (number of folds), D (dataset), b (computational budget)
Output: Best-performing, fully evaluated model
split D into k folds, s.t. D = {d1, d2, . . . , dk}
for each m ∈M do

train m using folds {d2, . . . , dk}
Pm ← performance of m evaluated using fold d1
Fm ← 1 (number of folds evaluated for m)

end for
η← #M (set number of completed fold evaluations to cardinality of M)
while η < b do (while the computational budget is not exhausted)

m* = best incompletely evaluated m ∈M (given the current mean performance for
each m, per P)

Fm* ← Fm* + 1
train m* using all folds di ∈ D where i 6= Fm*
evaluate performance of m* using fold dFm*
Pm* ←mean performance of m* for folds {d1, . . . , dFm*}
η← η + 1

end while
return best, fully evaluated m ∈M, per P

As indicated in the while loop, the greedy k-fold cross validation algorithm behaves
greedily by always pursuing the most promising available option, with the extent to
which an option is promising being determined by the current mean performance of
its corresponding model. Put differently, the next fold that the greedy algorithm will
evaluate will always originate from the best incompletely evaluated model, as determined
by each candidate model’s current mean performance. In this way, the greedy k-fold cross
validation algorithm focuses its early efforts on the most promising candidate models.
As time passes and the most promising models become fully evaluated, the algorithm
will steadily evaluate folds from less and less promising models, but will never waver
from the principle of greedily pursuing the most promising of its available options on
each iteration. In the presence of a computational budget constraint, this behavior thus
increases the probability of an optimal or near-optimal model being identified before the
computational budget is exhausted. If instead an early stopping criterion based on model
performance is being used, this behavior helps ensure that the early stopping criterion
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will be met as quickly as possible, thus accelerating the overall model search process. A
graphical example of the greedy k-fold cross validation algorithm is shown in Figure 10. In
the figure, Candidate Model 02 has already been fully evaluated, while evaluation of the
remaining models is still in progress.
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Since hyperparameter optimization and ML model selection tasks do not always occur
under the constraint of a computational budget, a variation of the greedy k-fold cross
validation method in which a simple early stopping criterion has been implemented is
described in Algorithm 3 below. This criterion allows the greedy cross validation algorithm
to decide whether to continue searching or to stop the search process early based on the
data, rather than relying on a predefined computational budget constraint. In this variant
of the greedy cross validation algorithm, an early stopping percentage (ε) is provided
as an input parameter. The product of ε and the number of candidate models is run
through a standard ceiling function to yield an early stopping threshold. Every time a
candidate model becomes fully evaluated, that model’s overall performance is compared
to the performance of the currently known, fully evaluated, best-performing model. If
the newly completed model is found to be inferior to the currently known best model,
then an inferior model counter is incremented. Whenever the value of the inferior model
counter exceeds the early stopping threshold, the search is stopped immediately and the
currently known, fully evaluated, best-performing model is returned. If, however, a newly
completed candidate model is found to be superior to the currently known best model,
then the newly completed model replaces the previous best-performing model, and the
inferior model counter is reset to zero. In this way, the algorithm will continue searching as
long as it continues to find better and better models. As soon as this steady improvement
falters (as signaled by a sufficiently large succession of inferior models), the search process
is terminated.
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Algorithm 3. ML model selection using greedy k-fold cross validation with early stopping.

Input: M (set of candidate models), k (number of folds), D (dataset), ε (early stopping percentage)
Output: Best-performing, fully evaluated model
split D into k folds, s.t. D = {d1, d2, . . . , dk}
for each m ∈M do

train m using folds {d2, . . . , dk}
Pm ← performance of m evaluated using fold d1
Fm ← 1 (number of folds evaluated for m)

end for
η← #M (set number of completed fold evaluations to cardinality of M)
ι← 0 (initialize inferior model counter)
while η < #M·k do (while there are more folds to be evaluated)

m* = best incompletely evaluated m ∈M (given the current mean performance of
each m, per P)

Fm* ← Fm* + 1
train m* using all folds di ∈ D where i 6= Fm*
evaluate performance of m* using fold dFm*
Pm* ←mean performance of m* for folds {d1, . . . , dFm*}
η← η + 1
if Fm* = k then (if all folds for m* have been evaluated)

if Pm* is the best performance thus far observed then
ι← 0 (reset inferior model counter)

else (if m* is inferior to the currently known, fully evaluated, best-performing
model)

ι← ι + 1
if ι > d#M·εe then (if the inferior model counter exceeds the early stopping

threshold)
break (exit the loop immediately)

end if
end if

end if
end while
return best, fully evaluated m ∈M, per P

4. Materials and Methods

Having presented two variants of the greedy k-fold cross validation algorithm, this
section describes two sets of evaluative experiments that were undertaken to assess the
performance of each of those variants. The first group of experiments addressed scenarios
involving a computational budget by comparing the performance of Algorithm 2 to that of
the standard k-fold method. The second group of experiments addressed scenarios without
a computational budget by comparing the performance of Algorithm 3 to a leading early
stopping method – the successive halving algorithm [12,13]. To rigorously evaluate each
variant of the greedy k-fold method, its performance was compared to its respective com-
peting method (either standard k-fold or successive halving) under many experimentally
manipulated conditions, including using a variety of different ML algorithms, a variety
of real-world datasets, and varying values of the number of folds (k) and the number
of candidate models (n). Before describing these experiments, however, it is necessary
to define the way in which the performance of the various methods was measured in
the experiments.

4.1. Performance Metrics

Beginning with the first group of experiments—in which the greedy k-fold cross
validation method was compared to the standard k-fold cross validation method—recall
from the earlier discussion that for a hyperparameter space containing n models that are
tested with cross validation using k folds, the total number of fold evaluations is nk. For
a set of n candidate models, then, the performance of each method in the first group of
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experiments was measured by the average search time required to find the best-performing
model in the set, with search time being calculated as the ratio of the total number of
fold evaluations that were required to find the best-performing model relative to the total
number of nk possible fold evaluations. This is a very convenient measure of search time
since it naturally yields an interval that ranges from 0.0 to 1.0, thus allowing straightforward
performance comparisons to be made across experimental conditions. Given the search
time metric described above, it can be readily calculated that the time required to fully
evaluate each candidate model is k/nk = 1/n. The maximum theoretical time required
to find the optimal model using the standard k-fold method is thus nk/nk = 1.0, while
the minimum search time for the standard method is 1/n. Since the standard k-fold
method essentially employs a linear search strategy, the average theoretical search time
for the standard method is 1/nk·nk/2 = 1/2. On average, then, the standard k-fold cross
validation method can be expected to find the optimal model after having fully evaluated
50% of the candidate models. While the maximum theoretical search time for the greedy
k-fold method is also 1.0, the minimum time for the greedy method to find the optimal
model is (n + k− 1) / nk. The average theoretical search time for the greedy k-fold method
will depend on the distributional properties of the training dataset and will hence vary
from one ML scenario to the next.

For the second group of experiments—which compared the early stopping version of
the greedy k-fold cross validation method to the successive halving method—a different
set of performance metrics was required. The reason for this is that, by definition, early
stopping algorithms stop the model search process early, and hence do not completely
evaluate every model in the set of candidate models. As such, we can never be entirely
certain that the final model chosen by an early stopping method is truly the best-performing
model in the set of candidate models. Furthermore, it would be inequitable to quantify the
search time for the greedy early stopping method and the successive halving method using
the same metric from the first group of experiments, since the two algorithms evaluate
neither the same number of folds nor folds consisting of the same number of cases. With
these considerations in mind, two performance metrics were designed for the second set
of experiments that compare each of the competing algorithms to a common baseline.
Specifically, for each comparison of the greedy and successive halving early stopping
methods, the common set of candidate models provided as input to each method was first
fully evaluated using the standard k-fold method described in Algorithm 1. For any set of
candidate models used in the second group of experiments, this approach thus provided a
true performance ranking for each model in the set, as well as measurement of the total
wall-clock time required by the standard k-fold method to conduct a complete search of
every candidate model in the set. With this information available for each experiment, it
was possible to compute two equitable metrics for comparing the greedy and successive
halving early stopping methods, the first of which addressed the quality of the final model
selected by each algorithm, and the second of which addressed the wall-clock time required
by each algorithm to complete the model search process. In the case of the former, the
quality of the final model selected by each algorithm was measured as the rank-based
percentile of the chosen model relative to the true best-performing model in the set of
candidate models. If, for example, an early stopping algorithm was given a set of n = 100
candidate models to consider and it ultimately selected the second-best model in the set,
then the quality of the algorithm’s choice would be scored as (100−1)/100 = 0.99, indicating
that only 1% of the other models in the set were superior to the chosen model. In the case
of the latter, the speed of each early stopping algorithm was computed as the ratio of the
wall-clock time required by the algorithm to complete the model search relative to the
wall-clock time required by the standard k-fold method to perform an exhaustive search on
the same set of candidate models. If, for example, an early stopping algorithm required 30
s to complete the search process while a comparable exhaustive search required 100 s, then
the speed of the early stopping method for that experiment would be scored as 30/100 =
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0.30, indicating that the early stopping method needed only 30% of the time required by
the standard k-fold method to complete the model search.

4.2. ML Algorithms and Datasets

As noted previously, a variety of ML algorithms and real-world datasets were used in
the experiments to compare the performance of the greedy k-fold cross validation method
to the standard (baseline) k-fold cross validation and successive halving methods. These
algorithms included the Bernoulli Naïve Bayes, Decision Tree, and K-Nearest Neighbors
(KNN) classifiers, each of which was chosen due to its distinct approach to performing
the classification task. All of the ML algorithms used in the experiments are open-source
and freely available via the Python scikit-learn library [38]. The three datasets used in
the experiments are all well-known among ML practitioners and included the Wisconsin
Diagnostic Breast Cancer dataset (569 cases, 30 features, 2 classes), the Boston Home Prices
dataset (506 cases, 13 features, 4 classes—discretized using a quartile split), and the Optical
Recognition of Handwritten Digits dataset (1797 cases, 64 features, 10 classes). These three
datasets were chosen since they varied widely in terms of their numbers of cases, features,
and classes, and since they are all freely available as part of the scikit-learn library [38], thus
helping ensure that the results of the experiments can be easily replicated.

4.3. ML Models and Folds

For each combination of ML classifier and dataset, n different candidate models were
evaluated in each experiment. The set of values used in the experiments for n was derived
from a geometric sequence with a common factor of two: f (x) = 2x. For the first group of
experiments (which extensively compared the greedy and standard k-fold cross validation
methods), x ∈ {7, 8, . . . , 11}, yielding n ∈ {128, 256, 512, 1024, 2048}. For the second
group of experiments (which compared the greedy and successive halving early stopping
methods), x ∈ { 8, 9, 10}, yielding a narrower n ∈ {256, 512, 1024}. A variety of values
of k were also used for the first group of experiments, with each cross-validation method
being evaluated with k ∈ {5, 10, 20} folds. These values of k were chosen based on their
common usage in applied ML projects. For the second group of experiments comparing the
performance of the greedy and successive halving early stopping methods, each experiment
relied on k = 10 folds. The candidate models that were evaluated in the experiments varied
according to the values of their hyperparameters, with the hyperparameter settings for
each model being chosen randomly in accordance with Bergstra and Bengio [21] using the
same ranges of possible values for each hyperparameter that were used by Olsen et al. [19].

4.4. Experiment Procedure

For each combination of ML classifier, dataset, and n, the same set of candidate
models was used to evaluate the competing methods in each experiment. This approach
was adopted to ensure that any differences in inter-method performance could not be
attributed to variation in hyperparameter settings among the n available models. For
the first group of experiments, all n candidate models were fully evaluated using the
standard and greedy cross validation methods during each experiment, with the completion
time and value of the performance metric being recorded for each model and method.
After all of the candidate models had been evaluated, the best-performing model and
its corresponding evaluation completion times were identified for each cross-validation
method. For the second group of experiments, all n candidate models were first fully
evaluated by the standard k-fold cross validation method for each experiment in order
to establish a baseline model search time and to identify the true performance rank for
each model. The same candidate models were then provided to the greedy and successive
halving early stopping methods, with the expectation that each method would partially
evaluate the set of candidate models according to the tenets of its respective algorithm. For
the current study, a value of 0.02 (or 2%) was used as the ε (early stopping percentage)
parameter for the greedy early stopping algorithm. After completing the model search
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process, the elapsed wall-clock time and the true performance rank of each method’s chosen
model were used to calculate the comparative search time and model quality metrics for
that experiment, as described previously in Section 4.1.

Finally, a total of 30 iterations of each experiment were carried out in the manner
described immediately above in order to ensure that the resulting distributions of the
performance metrics would be approximately Gaussian, per the central limit theorem [39].
The performance of the greedy cross validation method could then be compared to the
standard method (for the first set of experiments) and to the successive halving method
(for the second set of experiments) in each of the experimental conditions by means of a
Welch’s t-test. Welch’s t-tests were used in these comparisons since there was no reason to
expect that the variances of the distributions of the performance metrics for the various
methods would be equal, and Welch’s t-tests allow for unequal variances [40]. The results
of the experiments are reported and discussed in the following section.

5. Results and Discussion
5.1. Experiments Comparing the Greedy and Standard k-Fold Cross Validation Methods

The average search time required by the greedy and standard k-fold cross validation
methods to find the optimal model using the different ML algorithms, datasets, and values
of k is provided in Table 1 below, with the results in the table being computed using all
possible values of n. Probability values reported in Table 1 were derived from two-tailed
Welch’s t-tests for which the performance of the greedy method was compared to the
performance of the standard method in corresponding experimental conditions. As shown
in the table, in terms of its ability to quickly identify the optimal model, the greedy k-fold
method statistically outperformed the standard k-fold method at the p < 0.001 level in
every combination of dataset, ML algorithm, and value of k used in the experiments. These
results provide strong statistical evidence for the superiority of the greedy k-fold method
over the standard k-fold method in identifying optimal or near-optimal ML models when
operating under the constraints of a computational budget.

Table 1. Average search time to find the optimal model.

Dataset Algorithm Greedy k-Fold Method Standard k-Fold Method
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

Boston Home Prices
Bernoulli Naïve Bayes 0.342 *** 0.299 *** 0.301 *** 0.495 0.496 0.496

Decision Tree 0.280 *** 0.231 *** 0.229 *** 0.522 0.524 0.514
K-Nearest Neighbors 0.320 *** 0.291 *** 0.278 *** 0.501 0.488 0.489

Wisconsin Diagnostic
Breast Cancer

Bernoulli Naïve Bayes 0.282 *** 0.217 *** 0.212 *** 0.491 0.521 0.488
Decision Tree 0.291 *** 0.248 *** 0.219 *** 0.516 0.547 0.492

K-Nearest Neighbors 0.328 *** 0.283 *** 0.306 *** 0.459 0.493 0.492

Optical Recognition of
Handwritten Digits

Bernoulli Naïve Bayes 0.236 *** 0.164 *** 0.146 *** 0.523 0.515 0.468
Decision Tree 0.231 *** 0.148 *** 0.113 *** 0.494 0.440 0.526

K-Nearest Neighbors 0.270 *** 0.193 *** 0.191 *** 0.504 0.482 0.530

*** p < 0.001 for a Welch’s t-test comparing the performance of the greedy method to the standard method.

Having observed strong statistical evidence for the superiority of the greedy k-fold
method, it is reasonable to next inquire into the relative magnitude of that superiority.
Among the 27 unique combinations of datasets, ML algorithms, and values of k reported in
Table 1, the overall mean search time for the greedy method was 0.246 (std dev = 0.059),
while the overall mean search time for the standard method was 0.500 (std dev = 0.023). This
suggests that among the datasets and ML algorithms used in the experiments, the greedy
method on average identified the optimal model among the set of n candidate models after
completing 24.6% of the possible fold evaluations, while the standard method on average
identified the optimal model after completing 50.0% of the possible fold evaluations. Note
that this latter outcome conforms precisely with the theoretically expected average for
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the standard method described in Section 4.1. Put differently, the greedy k-fold cross
validation method identified the best-performing ML model among the set of candidate
models more than twice as quickly on average than the standard k-fold method. As an
illustrative example of this major difference in performance, Figure 11 below depicts the
average search time of the greedy vs. standard k-fold methods using the three different ML
algorithms on the Wisconsin Diagnostic Breast Cancer dataset.
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The results presented in Table 1 and Figure 11 reflect the comparative performance
of the standard and greedy k-fold methods across a variety of datasets, ML algorithms,
and values of k. Those results, however, were computed for all of the possible values of
n that were used in the first group of experiments. It is, of course, possible to gain more
detailed insights by disaggregating these results and considering how various values of n
impact the comparative performance of the standard and greedy k-fold methods. While
the limitations of print media make it infeasible to visualize the comparative performance
of these two different cross validation methods for all 135 unique combinations of datasets,
ML algorithms, values of k, and values of n used in the first group of experiments, a
representative example is provided in Figure 12 below. This figure shows how the greedy k-
fold method performed against the standard (baseline) k-fold method for varying numbers
of n candidate models on the Boston House Prices dataset at values of k ∈ {5, 10, 20}.
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Regardless of the dataset, ML algorithm, number of folds or number of candidate
models, the greedy k-fold method was observed to consistently outperform the standard
k-fold method on average in all of the 135 comparisons that constituted the first set of
experiments. In the absence of counterevidence, these observations provide support
for the notion that the greedy k-fold algorithm is generally superior to the standard k-
fold algorithm in quickly identifying optimal ML models, regardless of the dataset, ML
algorithm, number of folds or number of candidate models. Since the data suggest that the
greedy method is, on average, approximately twice as efficient as the standard method in
terms of its ability to quickly locate top-performing ML models, it is recommended that the
greedy method be given serious consideration in any machine learning hyperparameter
tuning/model selection scenario involving a computational budget constraint.

5.2. Experiments Comparing the Greedy Early Stopping and Successive Halving Methods

The second set of experiments conducted in this study compared the performance of
the greedy early stopping method described in Algorithm 3 against the performance of the
state-of-the-art successive halving method, both in terms of the average quality of the final
ML models selected by each method and in terms of each method’s average model search
time. The average quality of the final ML model selected by the greedy and successive
halving early stopping methods using different combinations of ML algorithms, datasets,
and values of n is provided in Table 2 below. As noted in Section 4.1, these results reflect
the average rank-based percentile of a chosen model relative to the true optimal model in
the set of candidate models used in an experiment. As with Table 1, probability values
reported in Table 2 were derived from two-tailed Welch’s t-tests for which the performance
of the greedy early stopping method was compared to the performance of the successive
halving method in corresponding experimental conditions.

Table 2. ML model selection performance for the greedy early stopping and successive halving methods.

Dataset Algorithm Greedy Early Stopping Method Successive Halving Method
n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024

Boston Home Prices
Bernoulli Naïve Bayes 0.959 *** 0.986 *** 0.970 *** 0.777 0.791 0.820

Decision Tree 0.994 *** 0.997 *** 0.999 *** 0.641 0.596 0.631
K-Nearest Neighbors 0.923 *** 0.944 *** 0.937 *** 0.632 0.698 0.662

Wisconsin Diagnostic
Breast Cancer

Bernoulli Naïve Bayes 0.981 *** 0.991 *** 0.989 *** 0.815 0.859 0.900
Decision Tree 0.997 *** 0.998 *** 0.999 *** 0.676 0.621 0.674

K-Nearest Neighbors 0.948 *** 0.957 *** 0.934 *** 0.695 0.587 0.477

Optical Recognition of
Handwritten Digits

Bernoulli Naïve Bayes 0.996 ** 0.999 *** 1.000 *** 0.982 0.979 0.971
Decision Tree 0.998 *** 0.998 *** 1.000 *** 0.890 0.860 0.859

K-Nearest Neighbors 0.982 *** 0.974 *** 0.980 *** 0.851 0.815 0.840

** p < 0.01, *** p < 0.001 for a Welch’s t-test comparing the quality of the final ML models selected by the greedy early stopping method and
the successive halving method in corresponding experimental conditions.

As shown in the table, in terms of its ability to select high-performing models, the
greedy early stopping method statistically outperformed the state-of-the-art successive
halving method in every combination of dataset, ML algorithm, and value of n used
in the early stopping experiments. From an interpretive perspective, this means that
the greedy early stopping method was, on average, able to select final ML models that
performed better than the final ML models selected by the successive halving method
in every one of the 27 head-to-head experiments conducted in this study. These results
provide strong statistical evidence for the superiority of the greedy early stopping method
over the successive halving method in identifying optimal or near-optimal ML models.

While establishing the ability of the greedy early stopping algorithm to select higher-
quality ML models than the successive halving algorithm is certainly necessary, it is not
by itself sufficient to establish the overall superiority of the greedy method. Indeed, the
primary goal of any hyperparameter optimization and ML model selection algorithm is not
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just to select optimal or near-optimal models, but also to do so as quickly as possible. For
this reason, it is necessary to compare the performance of the greedy early stopping method
to that of the successive halving method in terms of the wall-clock time required by each
approach to complete the ML model search process. To this end, the average wall-clock time
required by the greedy and successive halving early stopping methods to complete the ML
model search process under conditions involving different combinations of ML algorithms,
datasets, and values of n is provided in Table 3 below. As noted in Section 4.1, these
results reflect the average wall-clock time required to complete the model search process
relative to the total wall-clock time required by the standard k-fold method to perform a
full, exhaustive search of the same set of candidate models used in an experiment. As with
the previous table, probability values reported in Table 3 were derived from two-tailed
Welch’s t-tests comparing the performance of the greedy and successive halving early
stopping methods in corresponding experimental conditions.

Table 3. ML model search times for the greedy early stopping and successive halving methods.

Dataset Algorithm Greedy Early Stopping Method Successive Halving Method

n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024

Boston Home Prices
Bernoulli Naïve Bayes 0.229 *** 0.235 *** 0.199 *** 0.759 0.716 0.675

Decision Tree 0.204 *** 0.193 *** 0.191 *** 0.421 0.388 0.361
K-Nearest Neighbors 0.210 *** 0.209 *** 0.217 *** 0.438 0.419 0.405

Wisconsin Diagnostic
Breast Cancer

Bernoulli Naïve Bayes 0.219 *** 0.204 *** 0.204 *** 0.688 0.652 0.598
Decision Tree 0.242 *** 0.224 *** 0.207 *** 0.290 0.272 0.252

K-Nearest Neighbors 0.248 * 0.229 * 0.235 0.301 0.288 0.275

Optical Recognition of
Handwritten Digits

Bernoulli Naïve Bayes 0.178 *** 0.179 *** 0.184 *** 0.337 0.311 0.289
Decision Tree 0.219 0.198 0.211 0.166 *** 0.144 *** 0.127 ***

K-Nearest Neighbors 0.221 0.195 0.219 0.052 *** 0.044 *** 0.041 ***

* p < 0.05, *** p < 0.001 for a Welch’s t-test comparing the wall-clock time required by the greedy early stopping and successive halving
methods to complete the ML model search process in corresponding experimental conditions.

As shown in the table, in terms of the wall-clock time required to complete the ML
model search process, the greedy early stopping method performed statistically faster
than the state-of-the-art successive halving method in 20 out of 27 (or 74.1%) of the total
combinations of datasets, ML algorithms, and values of n used in the early stopping
experiments. The successive halving method, by contrast, was able to complete the ML
model search process more quickly than the greedy early stopping method in 6 out of
27 (or 22.2%) of the head-to-head experiments conducted in the study. There was one
additional experiment for which the average model search times for the two early stopping
methods were statistically identical. From an interpretive perspective, these results suggest
that the greedy early stopping method is usually able to complete the ML model search
process more quickly than the successive halving method in corresponding experimental
conditions. Collectively, the average time required to complete the ML model search
process across all of the experiments was 0.210 (std dev = 0.018) for the greedy early
stopping method and 0.360 (std dev = 0.205) for the successive halving method. This
indicates that the greedy early stopping method is, on average, approximately 70% faster
than the successive halving method when evaluating the same set of candidate models.
Given that the greedy early stopping method proposed in this paper consistently selects
higher-quality ML models than the successive halving method (vide supra, Table 2), and
given that the greedy early stopping method usually completes the ML model search
process more quickly than the successive halving method, it can be reasonably concluded
that the greedy early stopping method is generally superior to the successive halving
method in the context of hyperparameter optimization and ML model selection. As such, it
is recommended that the greedy early stopping method described in Algorithm 3 be given
serious consideration in any hyperparameter optimization/ML model selection scenario
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in which the ML practitioner wishes to identify an optimal or near-optimal ML model as
quickly as possible.

6. Conclusions

This paper developed and presented two variants of a greedy k-fold cross validation
algorithm and subsequently evaluated their performance in a wide array of hyperparameter
optimization and ML model selection tasks. By means of two large sets of experiments,
it was shown (1) that the greedy method substantially outperforms the standard k-fold
method in its ability to quickly identify optimal ML models in scenarios involving a
computational budget, and (2) that the greedy method substantially outperforms the state-
of-the-art successive halving method, in terms of both the wall-clock time required to
complete the ML model search process and the quality of the final ML models selected
by the competing methods. More specifically, given a set of candidate models, the first
variant of the greedy k-fold method will, on average, identify the optimal ML model
approximately twice as quickly as the standard method. This means that given a fixed
computational budget, approximately twice as many candidate models could be considered
using the greedy k-fold method than could otherwise be considered using the standard
method. Alternatively, given a fixed number of candidate models, the greedy k-fold
method would, on average, allow the best-performing model in the set to be identified
using just half of the computational budget that would be required to achieve the same
results using the standard method. For the second variant, the results indicate that given
a set of candidate models, the greedy early stopping method consistently selects better-
performing models than the successive halving method and that, on average, the greedy
early stopping method completes the ML model search process approximately 70% faster
than the successive halving method. From a practical perspective, these properties of the
greedy k-fold method can translate to huge savings for companies by reducing the amount
of time and money required to develop and train ML-based products and services, thereby
yielding substantial gains in competitive advantage. The greedy k-fold method can also
provide major benefits to AI and machine learning researchers who are developing and
performing hyperparameter optimization on complex ML models.

As with all research, this project has several limitations that merit acknowledgement.
First, although efforts were taken to test the two variants of the greedy k-fold algorithm
on a variety of real-world datasets, those datasets were all relatively small, with the
largest dataset containing just 1797 cases and 64 features. There is some indication among
the results presented in Table 1 that the performance of the greedy k-fold method may
improve on larger datasets (possibly due to less variation among the distributions of
each fold), but this notion was not explicitly tested in the current study. Second, while
the greedy method was subjected to three different ML algorithms in this project, all of
those algorithms were classifiers. There is no obvious a priori reason to expect that the
greedy k-fold method would perform differently for ML algorithms that produce ordinal or
continuous predictions. Nevertheless, such algorithms were not used in the current study,
which limits the generalizability of the results. Finally, the performance of the greedy k-fold
method described in the current paper was compared only against the standard k-fold
method and the successive halving method in terms of its ability to quickly identify an
optimal model. While the greedy method is unique in terms of its focus on cross validation
as a means of accelerating the hyperparameter optimization/ML model selection process,
many other approaches to hyperparameter optimization have been proposed, and the
greedy k-fold method has not yet been compared to those methods.

Ultimately, this paper represents a small but important first step in investigating
greedy k-fold cross validation. Although this paper focused only on the potential of greedy
cross validation as an accelerant for ML hyperparameter optimization and model selection,
the greedy method may prove to be of great value in other situations, as well. There
are, for example, many scenarios across a wide range of scientific disciplines in which
cross validation is used as a basis for comparing competing models (e.g., [41–43]), and the
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greedy method may be usefully applied to any of these scenarios. Outside of the realm
of model selection, the greedy cross validation method developed in this paper may also
be usefully applied to a wide variety of bandit problems. Clearly, much remains to be
done. To be sure, the greedy k-fold method described in this study is the simplest possible
version of the algorithm, and more advanced and better performing algorithms based on
the same principles may certainly be feasible. For example, could a more effective approach
be developed to handle the exploration/exploitation dilemma? Could the distributional
properties of a dataset’s folds be utilized as a basis for identifying when to abandon
unpromising models? Can the greedy k-fold method be combined with other approaches
designed to accelerate hyperparameter optimization in order to identify optimal ML models
even more quickly? All of these questions remain to be answered and hence represent
fruitful opportunities for future research in this area. For now, we must content ourselves
with the knowledge that the greedy k-fold cross validation algorithm appears to be highly
promising, and may open new doors for a vast array of optimization problems.
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