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Abstract 
 
A wide variety of organizations now regularly rely 

on established metaheuristic search algorithms in 
order to find solutions to otherwise intractable 
optimization problems. Unfortunately, neither the 
developers of these algorithms nor the organizations 
that rely on them typically assess the algorithms’ 
performance against a baseline random search 
strategy, opting instead to compare a specific 
algorithm’s performance against that of other 
metaheuristic search algorithms. This paper reveals 
the folly of such behavior, and shows by means of an 
optimization case study that simple random or nearly 
random search algorithms can, in certain 
circumstances, substantially outperform several of the 
most widely used metaheuristic search algorithms in 
finding solutions to optimization problems. The 
implications of the observed results for both 
organizations and researchers are presented and 
discussed. 
 
 
1. Introduction  
 

For the past several decades many organizations, 
acting in a wide variety of industries, have relied on 
heuristic search algorithms in order to find near-
optimal solutions to problems that would otherwise be 
infeasible using current technologies [1]. The 
infeasibility of such problems emerges from 
computational or temporal limitations that prevent an 
organization from examining every possible solution 
in a large decision space. Consider, for example, the 
case of companies such as United Parcel Service 
(UPS), DHL Express, and FedEx, each of which must 
deliver hundreds of thousands or even millions of 
packages every day. Ideally, each of these companies 
would like to minimize the total costs associated with 
delivering its packages with a view toward 
maximizing corporate profits. Unfortunately, 
identifying optimal routes for their legions of delivery 
drivers that simultaneously consider factors such as 

fuel costs, total time, distance travelled, traffic flows, 
weather conditions, and promised delivery windows 
makes this an extremely complicated, NP-hard 
optimization problem [2]. The intractability of this 
problem on a large scale is, in fact, so well-known that 
it has been given its own name – the Vehicle Routing 
Problem – and has been studied in the optimization 
literature for nearly 60 years [3]. 

When an organization is faced with an unavoidable 
NP-hard optimization problem (such as the Vehicle 
Routing Problem), it has no choice but to acknowledge 
the intractable nature of the situation, and turn its 
attention to algorithms that seek to provide near-
optimal solutions to the problem within a timeframe 
that is acceptable in light of the organization’s 
objectives and constraints. Among the wide variety of 
algorithms that have been designed to address NP-hard 
optimization problems, many of the most effective and 
widely used fall under the umbrella of what are known 
as metaheuristic search algorithms; i.e., algorithms 
that use a rule-based, iterative process to explore a 
decision space with the goal of efficiently finding a 
near-optimal solution to the underlying problem [4]. 
Some of the most popular and long-lived heuristic 
search algorithms include Tabu search [5] and 
Backtracking [6], with more recent entrants including 
Ant Colony Optimization [7] and Cuckoo Search [8], 
among many others. 

Implicit in organizational adoption and use of 
metaheuristic search algorithms such as those noted 
above is the assumption that the algorithms will yield 
solutions that offer the organization at least some 
degree of improvement over what could be expected 
from entirely random or nearly random search 
methods. For example, imagine a decision space that 
contains one million possible solutions, each of which 
requires one second of computational time to evaluate. 
If an organization’s constraints are such that it can wait 
for only 1,000 seconds, then it will be computationally 
possible for the organization to explore only 1% of the 
overall decision space before it must settle on a 
solution and proceed with its other tasks. In a scenario 
such as this, the organization might reasonably adopt 
a metaheuristic search algorithm in order to find the 
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best solution possible given its time constraints. By 
doing so, however, the organization is implicitly 
assuming that its chosen metaheuristic search 
algorithm will, on average, identify better solutions 
than could otherwise be obtained by means of a 
random or nearly random search strategy. 

The key problem with this assumption is that it is 
almost never actually tested in practice. Clearly, the 
performance of a random search strategy provides a 
natural and fundamental baseline against which any 
metaheuristic search algorithm can be evaluated, but if 
the optimization literature serves as any sort of guide, 
then it must be concluded that the performance of 
proposed metaheuristic search algorithms is almost 
never compared against that of a random baseline. As 
evidence of this phenomenon, consider that none of 
the authors of the foundational papers or books in 
which any of the most popular metaheuristic search 
algorithms1 were first described took the time to 
compare the performance of their newly proposed 
algorithms to a random search strategy [5, 9-18]. 
Instead, the common practice among researchers who 
are proposing a new metaheuristic search algorithm is 
simply to compare the performance of their proposed 
algorithm against that of other metaheuristic search 
algorithms.  

Incorporating elements of randomness into 
metaheuristic search algorithms has been 
acknowledged by several authors to impart desirable 
characteristics upon those algorithms. For example, it 
has been noted that adding a random restart feature to 
certain metaheuristic search algorithms can help those 
algorithms to escape from local optima, thereby 
improving the algorithms’ chances of finding a better 
solution [18]. It has also been shown that using a 
multi-start approach that incorporates random 
elements can improve overall metaheuristic search 
performance for certain combinatorial optimization 
problems [19]. Although such approaches reveal some 
of the advantages that randomness can impart, 
incorporating random elements into a metaheuristic 
search algorithm is nevertheless fundamentally 
different from considering the performance of a fully 
random or nearly random approach. The general 
indifference and lack of attention in the metaheuristic 
optimization literature toward the comparative 
performance of random search strategies serves as the 
primary motivation for this paper, and raises the 
following general research question:  

 
Can simple random search strategies outperform 
well-established metaheuristic search strategies? 

                                                 
1 See [18] for a list of the most popular metaheuristic search 
algorithms. 

 
More particularly, this paper inquires into the 

following specific research question: 
 

Under what conditions can random search 
algorithms outperform well-established metaheuristic 
search algorithms in a process optimization task? 

 
The balance of this paper seeks to provide some 

much-needed insights into these questions. In the next 
section, a multidimensional process optimization 
problem is described that will serve as the basis of our 
investigation into the comparative performance of 
several random and metaheuristic search strategies. 
Section 3 briefly describes each of the random and 
metaheuristic search algorithms used in the study, as 
well as the means by which the performance of the 
various algorithms were evaluated and compared. 
Section 4 describes the results of the analysis, and 
discusses the implications of those results for both 
managers and researchers. The paper concludes with 
Section 5, which provides a brief summary, a 
discussion of the paper’s limitations, and a few final 
remarks. 

 
2. A process optimization problem  

 
It is now well-established that an organization’s 

long-term prospects for success are intimately linked 
to the organization’s ability to monitor, adjust, and 
optimize its business processes on an ongoing basis 
[20]. Organizations are typically characterized by a 
wide variety of interacting processes, each of which 
can be configured in a number of different ways. Since 
each process may interact with many other processes, 
identifying the best way to configure each of these 
interacting processes such that together they 
maximally contribute to some higher-level goal (e.g., 
profit maximization, efficiency, etc.) is a fundamental 
component of effective business process management 
[21].  

In this paper, we consider a scenario in which an 
organization is attempting to optimize three 
interacting processes, each of which can be configured 
in 100 different ways. Different combinations of these 
process configuration possibilities either improve or 
erode the efficiency of the overall process system. 
Since each of the three processes in this scenario can 
be configured in 100 different ways, there are a total 
of 1003 = 1 million distinct ways in which the three-
process system can be configured. To model this 
situation, we adopt a geometric framework in which 
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each process and its 100 possible means of 
configuration is represented as a parameter in a three-
dimensional Euclidean space. In this way, any of the 1 
million possible system configurations can be 
conceptualized as a distinct location within the three-
dimensional space. For example, if the three processes 
are labeled X, Y, and Z, then the spatial coordinates 
(25, 50, 75) would indicate that process X is using 
configuration option 25 (out of 100 possible 
configuration options), process Y is using 
configuration option 50, and process Z is using 
configuration option 75.  

To perturb the three-dimensional space, we adopt 
a model based on Newtonian gravity in which each of 
the 1 million spatial locations is occupied by an object 
having a particular mass. By default, each object was 
initially assigned a unity mass of 1 kilogram. Twenty 
objects were then chosen at random, each of which 
was assigned a random integer mass between 2 and 
100 kilograms, inclusive2. The resulting space thus 
possessed a quantifiable level of gravitational 
acceleration at each spatial location, and contained 
both a single global maximum and a variety of local 
optima. For purposes of this study, the level of 
gravitational acceleration at any location within the 
three-dimensional space was taken to represent the 
degree of overall system efficiency that the 
organization would enjoy if it adopted the three 

process configuration options represented by the 
spatial coordinates for the location in question.  

The nearly 8 trillion calculations that were 
necessary in order to compute the total level of 
gravitational acceleration at each of the 1 million 
points within the three-dimensional space was 
laboriously performed using the DIRECT algorithm 
created by the N-Body Shop at the University of 
Washington [22]. For the purpose of these calculations 
Newton’s universal gravitational constant was set 
equal to 1.0. After completing the calculations, the 
mean gravitational acceleration (i.e., the average level 
of efficiency) for the decision space was determined to 
be 186.401 (stdev = 44.627), with a minimum value of 
3.469 (representing the least efficient combination of 
process configurations) and a maximum value of 
277.149 (representing the most efficient combination 
of process configurations). The spatial coordinates for 
the optimal combination of process configurations 
were observed to be (X = 74, Y = 91, Z = 65). Figure 1 
below provides two different depictions of the 
decision space, with the leftmost image showing a 
random sample of 100,000 (i.e., 10%) of the possible 
process configurations, and the rightmost image 
showing the areas of strongest gravitational 
acceleration (i.e., high efficiency) within the decision 
space. 

 

 

Figure 1. Two views of the process optimization decision space. Left: random sample of 100,000 possible 
process configurations; Right: areas of high process configuration efficiency. 

 

                                                 
2 The spatial locations and masses of these 20 randomly chosen 
objects were: (0, 76, 43): 22 kg, (6, 60, 21): 58 kg, (8, 90, 30): 51 
kg, (14, 18, 93): 12 kg, (23, 29, 17): 43 kg, (27, 61, 22): 78 kg, (46, 
76, 99): 64 kg, (52, 18, 46): 67 kg, (67, 67, 37): 81 kg, (70, 39, 90): 

29 kg, (71, 28, 51): 56 kg, (72, 51, 25): 32 kg, (74, 90, 65): 80 kg, 
(75, 44, 28): 12 kg, (76, 12, 82): 48 kg, (79, 4, 29): 42 kg, (80, 16, 
89): 68 kg, (81, 83, 39): 85 kg, (90, 90, 78): 73 kg, and (99, 87, 
74): 66 kg. 

Page 1290



4 
 

Having described the geometric framework 
underlying the three-process optimization problem, 
we next turn our attention to the random and 
metaheuristic search algorithms that were used to 
explore the decision space, as well as the means by 
which the performance of the algorithms was 
evaluated and compared. It will serve the reader well 
to keep this geometric framework in mind, as it will be 
referred to regularly in the following section. 
 
3. Search algorithms and analytical 
methods 
 

We begin this section by describing the two 
random search algorithms and the two metaheuristic 
search algorithms that were used to search the process 
optimization decision space described in the previous 
section. The goal of each of these algorithms was to 
find the combination of process configurations that 
would yield the highest level of overall system 
efficiency after having examined a specified number 
of possibilities. After describing the four search 
algorithms, we will then proceed to a detailed 
description of the analytical methods that were used to 
evaluate and compare the performance of those 
algorithms. 
 
3.1. Random search algorithms 
 

Two random or nearly random search algorithms 
were used in the analysis: random search (RND) and 
self-avoiding random search (SA-RND). 
 
3.1.1. Random search (RND). The random search 
algorithm is by far the simplest possible search 
algorithm to implement, describe, and understand. 
Recalling that the decision space is characterized by 
three processes (X, Y, and Z), each of which can be 
configured in 100 different ways, the random search 
algorithm works by using a uniform random number 
generator to select a random integer between 0 and 99 
(inclusive) for each of the three processes. Together, 
these three randomly chosen values represent a unique 
location in the decision space; e.g., (X = 36, Y = 24, Z 
= 18). The algorithm then evaluates the overall 
efficiency of the system at that location, and saves the 
resulting solution only if it is the best solution that has 
been thus far observed, overwriting the prior best 
solution. This process is then repeated until a specified 
number of possible solutions have been examined, 
after which the best overall solution identified during 
the search process is returned. 
 

3.1.2. Self-avoiding random search (SA-RND). 
After the fully random search algorithm, the self-
avoiding random search algorithm is next in rank with 
respect to its simplicity. The self-avoiding random 
search algorithm is, in fact, identical to the random 
search algorithm described in the previous subsection, 
with one important addition – that of a memory. 
Whereas in a (fully) random search it is perfectly 
possible for the algorithm to examine the same 
location in the decision space multiple times, in a self-
avoiding random search, the algorithm keeps a record 
of all of the locations that it has previously examined. 
If by random chance the algorithm happens to select a 
previously visited location for its next inquiry, then a 
new set of location coordinates is randomly generated 
until a location is identified that has not already been 
examined. In this way, the algorithm avoids visiting 
any given location more than once.  
 
3.2. Metaheuristic search algorithms 
 

We next turn our attention to the two metaheuristic 
search algorithms that were used in the analysis: Tabu 
search (TS-100 & TS-1000) [5] and Backtracking 
search (BT) [6]. These two algorithms were chosen for 
inclusion in the analysis because they are two of the 
best-known, well-established, and well-studied 
metaheuristic search algorithms known to exist (each 
having existed for several decades), and because they 
are among the most widely used metaheuristic search 
algorithms by modern organizations seeking to solve 
complex optimization problems. Before proceeding to 
the algorithm descriptions, however, it is first 
necessary to define three concepts that are central to 
both of the algorithms: neighbors, moves, and 
neighborhoods. 

Recalling the geometric framework described in 
the previous section, a neighbor is defined as a 
location (i.e., a possible solution) that is geometrically 
adjacent to the current location. A move, then, is an 
action in which the focus of attention shifts from the 
current location to one of the current location’s 
neighbors. The set of neighbors for the current location 
is referred to as its neighborhood. Figure 2 below 
depicts these concepts in two dimensions. 

In the example illustrated in Figure 2, imagine that 
the focus of a search algorithm is currently on node 13. 
From this location, the algorithm can move to one of 
node 13’s neighbors (i.e., nodes 7, 8, 9, 12, 14, 17, 18, 
or 19), which together constitute its neighborhood. As 
can be readily seen in this illustration, the composition 
of the current neighborhood changes with every move. 
The principles of Euclidean geometry allow the 
concepts of neighbors, moves, and neighborhoods to 
be readily extended into higher-dimensional spaces, 
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such as with the current study wherein the 
metaheuristic search algorithms are operating within a 
three-dimensional decision space. 

 

Figure 2. A two-dimensional illustration of moves, 
neighbors, and neighborhoods in metaheuristic 

search algorithms. 
 
 
3.2.1. Tabu search (TS-100 & TS-1000). The Tabu 
search algorithm begins by examining a specified or 
randomly chosen location within the decision space, as 
well as all of the potential solutions in the initial 
location’s neighborhood. The best-performing 
solution thus far observed is then recorded, after which 
the algorithm moves to the neighbor that offers the 
best available solution. All of the previously 
unexamined neighbors in the new location’s 
neighborhood are then examined, the overall best 
solution thus far observed is updated if necessary, and 
the algorithm again moves to the best-performing 
location in the neighborhood. This process continues 
until a specified number of locations have been 
examined, or until some other stopping criterion has 
been met. Critically, as the algorithm moves from one 
location to the next it constantly constructs and 
updates its Tabu list – a memory structure that keeps 
track of recently visited locations within the decision 
space. Returning to any location on the Tabu list is 
disallowed (hence the term Tabu), and this prevents 
the algorithm from becoming stuck at a local optimum. 
The Tabu list is typically of a predefined size (e.g., 
1,000 locations), and behaves as a queue, such that 
when the list is full, the oldest item on the list is 
dropped in order to make room for the newest item. In 
its simplest form, the Tabu search algorithm maintains 
only a short-term Tabu list (such as that described 
above), but rule-based intermediate-term and long-
term memory structures are also possible in more 
sophisticated versions of the algorithm, the goals of 
which are typically to diversify the search, or intensify 
the search in specific areas of the decision space. 

The use of a Tabu list introduces several 
interesting properties into the behavior of the search 
algorithm. First, the definition of what constitutes the 
neighborhood for a specific location depends on the 
composition of the Tabu list. Referring back to Figure 
2, after examining node 13 and its neighbors, the 
algorithm might decide that its next move will be to 
node 14. Before moving, node 13 and all of its 
neighbors (except node 14) would be added to the 
Tabu list. Upon arriving at node 14, the neighborhood 
would consist only of nodes 10, 15, and 20, since all 
of node 14’s other neighbors are currently marked as 
Tabu. Second, because the Tabu list is typically of a 
finite size, it is possible for the algorithm to revisit 
previously examined locations within the decision 
space once those locations have expired from the Tabu 
list. This can encourage the algorithm to explore new 
paths through the decision space beginning at 
locations that were initially ignored due to better 
options being available in the neighborhood at the time 
of the previous visit. 

For the current study, two variants of the Tabu 
search algorithm were included in the investigation, 
one of which used a Tabu list whose maximum size 
was constrained to 100 locations, and the other of 
which used a Tabu list with a maximum size of 1,000 
locations. These variants are later referred to as TS-
100 and TS-1000, respectively. Since little guidance 
exists in the literature regarding the ideal size of a 
Tabu list, these two variants of the algorithm were 
included in the current study for purposes of 
methodological rigor. 
 
3.2.2. Backtracking search (BT). The Backtracking 
search algorithm is one of the oldest, most well-
established, and widely used metaheuristic search 
algorithms [6]. As with Tabu search, the Backtracking 
search algorithm begins by examining a specified or 
randomly chosen location within the decision space, as 
well as all of the potential solutions in the initial 
location’s neighborhood. The best-performing 
solution thus far observed is recorded, after which the 
Backtracking algorithm moves to the neighbor whose 
solution offers the most improvement over that of the 
current location. All of the previously unexamined 
neighbors of the new location are then evaluated, after 
which the best solution thus far observed is updated if 
necessary, and the algorithm again moves to the 
neighbor whose solution offers the most improvement 
over that of the current location.  

If at any time while the algorithm is searching the 
decision space two or more neighbors happen to offer 
the same degree of maximal improvement over the 
current location, then one of the neighbors is chosen at 
random to be the destination of the next move. If none 
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of the locations in the neighborhood offers any 
improvement over the current location, then the 
algorithm steps backwards to the previous location on 
the path (hence the term Backtracking), and then 
moves to the location that offers the second-best 
degree of improvement over the current location’s 
level of performance. If all available paths originating 
from a specific location have been exhausted, then the 
algorithm steps backwards once again to the previous 
location on the path, and continues searching. If all 
possible paths have been exhausted and the algorithm 
has stepped backwards all the way to its initial point 
of origin, then a new origin location within the 
decision space is chosen at random, and the search 
process begins again from that point. As with Tabu 
search, the Backtracking search algorithm continues 
until it has examined a specified number of possible 
solutions, or until some other stopping criterion has 
been reached. 
 
3.3. Analytical methods 
  

Having described the two random and two 
metaheuristic search algorithms that were used in the 
analysis, we now proceed to describe the means by 
which the performance of those algorithms was 
evaluated and compared. The general strategy for 
analyzing the performance of the various algorithms 
was to allow each algorithm to repeatedly explore the 
decision space described in Section 2, with a view 
toward identifying the most efficient combination of 
configurations for processes X, Y, and Z. During each 
trial, the algorithms were allowed to explore a specific 
number of locations within the decision space, with the 
number of locations explored being assigned from a 
set of 13 equidistantly spaced values on a logarithmic 
scale ranging from 0.01% to 10% of the total number 
of locations in the decision space3. Recalling that the 
decision space contained a total of 1 million unique 
locations, the algorithms were thus constrained to 
examining as few as 100 locations per trial, to as many 
as 100,000 locations per trial. Using the number of 
locations explored as a stopping criterion provided an 
equitable basis of comparison by which the 
performance of the algorithms could be observed as 
they were allowed to explore greater and greater 
proportions of the overall decision space. 

Each algorithm was subjected to 500 separate trials 
for each of the 13 stopping criteria options described 
above. For each combination of trial and stopping 
criterion, each algorithm was assigned the same, 

                                                 
3 13 equidistantly spaced values were considered in order to 
provide more detailed insights into the comparative performance of 
the search algorithms than could otherwise have been obtained if 

randomly chosen starting location within the decision 
space. This approach was taken in order to ensure 
equitability among the four search algorithms by 
preventing any particular algorithm from having an 
advantage in a particular trial due simply to its having 
been assigned a propitious random starting location. 
With 500 trials per stopping criterion, 13 different 
stopping criteria, and five different algorithms or 
algorithm variants, a total of 32,500 distinct trials were 
conducted in the study. 

The overall performance of each algorithm for 
each stopping criterion option was measured as the 
mean of the best solution found by the algorithm 
during each of the 500 trials. Comparisons between the 
levels of performance of any pair of algorithms within 
a particular stopping criterion option was assessed by 
means of a series of two-tailed, paired t-tests [23]. The 
relative performance of the set of random search 
algorithms vs. that of the set of metaheuristic search 
algorithms was also assessed by computing the overall 
average level of performance of the random and 
metaheuristic algorithms within each of the stopping 
criterion options, and then using a Welch t-test to 
evaluate the extent to which the two levels of 
performance were statistically different from one 
another [24]. The results of all of these analyses are 
presented and discussed in the following section. 
 
4. Results and discussion 
 

We begin the presentation of our results with Table 
1 below, which shows the average level of 
performance for each algorithm within each stopping 
criterion, as well as the average level of performance 
for the set of random algorithms and the set of 
metaheuristic algorithms. When considering these 
values, it may be useful to recall from Section 2 that 
the level of performance among the complete set of 1 
million locations in the decision space ranged from 
3.469 to 277.149, with the average level of 
performance being 186.401 (stdev = 44.627). 

Many interesting insights can be gained by 
carefully examining the values reported in Table 1. 
First, the overall average performance of the self-
avoiding random search algorithm (SA-RND) was 
slightly higher than that of the (fully) random search 
algorithm (RND). This accords well with what one 
should intuitively expect, since by avoiding any 
locations that it has previously visited, the self-
avoiding random search should, on average, visit more 
unique locations during each trial than its fully random 

only the “natural” points of consideration on the logarithmic scale 
(i.e., 0.01%, 0.10% 1.00%, and 10.00%) had been evaluated. 
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counterpart (which may, by random chance, visit the 
same location more than once). Second, among the 
metaheuristic search algorithms, the Backtracking 
search algorithm (BT) generally outperformed both 
variants of the Tabu search algorithm (TS-100 & TS-
1000), thereby suggesting that the Backtracking 
approach may be more suitable for this type of 
optimization problem than Tabu search. Third, 
recalling that the two variants of the Tabu search 
algorithm varied only according to the size of their 
Tabu lists, the variant with the shorter Tabu list (TS-

100) outperformed the variant with the longer Tabu 
list (TS-1000) when constrained to searching 
approximately 0.18% to 0.32% of the overall decision 
space. When the algorithm was allowed to search 
1.00% of the overall decision space or more, however, 
the variant with the longer Tabu list (TS-1000) 
outperformed the variant with the shorter Tabu list 
(TS-100). Insights such as these may prove useful to 
researchers who are attempting to formulate 
recommendations about the appropriate size of a Tabu 
list. 

Table 1. Comparative performance of random and metaheuristic search algorithms. 

Number of Locations 
Explored 

(% of Decision Space) 

Random Algorithms Metaheuristic Algorithms 
Mean Performance  

by Algorithm Category 

RND (R1) SA-RND (R2) TS-100 (M1) TS-1000 (M2) BT (M3) Random Metaheuristic 

100 (0.010%) 251.71 M1, M2, M3 251.77 M1, M2, M3 241.72 241.72 241.67 251.74*** 241.71 

178 (0.018%) 253.44 253.64 254.28 R1, R2 254.28 R1, R2 254.28 R1, R2 253.54 254.28*** 

316 (0.032%) 254.73 254.65 256.51 R1, R2 256.51 R1, R2 256.51 R1, R2 254.69 256.51*** 

562 (0.056%) 255.57 255.46 256.58 R1, R2 256.58 R1, R2 256.58 R1, R2 255.52 256.58*** 

1,000 (0.100%) 255.96 256.05 256.52 R1, R2 256.52 R1, R2 256.59 R1, R2 256.00 256.54*** 

1,778 (0.178%) 256.21 256.36 256.47 R1 256.46 R1 256.58 R1 256.28 256.50*** 

3,162 (0.316%) 256.49 256.63 256.57 256.54 256.73 256.56 256.61 

5,623 (0.562%) 256.77 M1, M2 256.84 M1, M2 256.49 256.49 256.88 256.80* 256.62 

10,000 (1.000%) 257.15 M1 257.44 M1, M2 256.51 257.00 257.68 R1 257.29 257.06 

17,783 (1.778%) 258.07 M1 258.14 M1 256.51 257.93 258.94 R1, R2 258.10 257.79 

31,623 (3.162%) 258.98 M1, M2 258.81 M1, M2 256.46 258.02 259.29 258.90*** 257.92 

56,234 (5.623%) 260.59 M1, M2 260.62 M1, M2 256.50 258.15 260.66 260.61*** 258.44 

100,000 (10.000%) 262.89 M1, M2 263.92 M1, M2, M3 256.45 257.90 262.50 263.41*** 258.95 

Overall Mean: 256.81 256.95 255.20 255.70 256.53 256.88 255.81 

M1, M2, M3 indicates that a random algorithm outperformed a metaheuristic algorithm at the p < 0.05 level or better (M1 = TS-100, M2 = TS-1000, M3 = BT). 
R1, R2 indicates that a metaheuristic algorithm outperformed a random algorithm at the p < 0.05 level or better (R1 = RND, R2 = SA-RND). 
* indicates that one algorithm category statistically outperformed the other algorithm category (* p < 0.05, ** p < 0.01, *** p < 0.001) 

We will next direct our attention toward answering 
this paper’s primary research question; to wit:  

 
Under what conditions can random search algorithms 
outperform metaheuristic search algorithms in a 
process optimization task?  
 

The values reported in Table 1 show that there 
were many situations in which the random search 
algorithms outperformed the metaheuristic search 
algorithms, and vice versa. This observation alone 
casts a shadow of doubt over the assumption of 
metaheuristic superiority. Further, examining the 
mean performance of the various algorithms by 
category reveals that when the area to be searched was 
less than approximately 0.018% of the total size of the 
decision space, the random search algorithms 

statistically outperformed the metaheuristic search 
algorithms when trying to find a near-optimal solution 
to the process optimization task. The random search 
algorithms again showed themselves to be superior 
when the area to be searched was larger than 
approximately 0.316% of the total size of the decision 
space. Put differently, the data show that the 
metaheuristic search algorithms outperformed their 
random counterparts only within a very narrow range. 
In all other situations, the random search algorithms 
were, on average, observed to consistently outperform 
the metaheuristic search algorithms. These results are 
depicted graphically in Figure 3 below.  

The implications of Figure 3 for organizational 
decision-making should not be ignored, particularly if 
similar patterns are observed to exist among other 
optimization problems. Put simply, the figure shows 
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that an organization struggling with this particular 
optimization problem would do well to rely on 
metaheuristic search algorithms if – and only if – its 
constraints were such that it could afford to explore 
only 0.018% to 0.316% of the decision space before 
settling on a solution. In all other cases, the figure 
suggests that the organization would be better off by 
relying on random search algorithms. The extent to 
which this pattern of results would hold in the context 
of other optimization problems is unknown, but until 

further evidence is collected and analyzed, 
organizations would be well-advised to evaluate the 
performance of any metaheuristic search algorithm 
upon which they may rely against that of a random 
baseline. Further, it should be the responsibility of any 
researcher who is proposing a new metaheuristic 
search algorithm to compare the performance of the 
proposed algorithm against a similar random baseline. 

 
 

 

Figure 3. Performance of random and metaheuristic search algorithms on a logarithmic scale. 

 
5. Summary, limitations, and concluding 
remarks 
 

The current paper reported on a study aimed at 
investigating whether and under what conditions 
random search algorithms can outperform 
metaheuristic search algorithms when attempting to 
find a near-optimal solution to an optimization 
problem. Using a process optimization task, the 
performance of two random search algorithms was 
compared against that of two popular metaheuristic 
search algorithms under conditions in which the 
various algorithms were allowed to search between 
0.01% and 10.00% of the overall decision space. The 
results of the study demonstrate conclusively that 
under certain conditions, random search algorithms 
can regularly and consistently outperform several of 
the most well-known and widely used metaheuristic 
search algorithms in finding a near-optimal solution to 

an optimization problem. Specifically, the results 
showed that the random search algorithms statistically 
outperformed the metaheuristic algorithms in the 
process optimization task when the percentage of the 
decision space explored was either less than 
approximately 0.018% of the total decision space or 
greater than approximately 0.316% of the total 
decision space. Put differently, the metaheuristic 
search algorithms were only able to consistently 
outperform the random search algorithms when they 
were constrained to searching within a relatively 
narrow range of percentages of the overall size of the 
decision space.  

One possible explanation for the observed results 
is that due to their uniformly random nature, the 
random algorithms are likely to do at least some 
exploring in all regions of the decision space, despite 
doing so with a coarser degree of granularity than their 
metaheuristic counterparts. This supposition would 
intuitively hold when the number of locations that the 
algorithms are allowed to explore is both very small 
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and comparatively large. The metaheuristic 
algorithms, by contrast, are designed to spend a great 
deal of time carefully examining all of the possibilities 
within smaller regions of the decision space. Although 
it seems clear that under certain conditions this design 
characteristic allows the metaheuristic algorithms to 
outperform the random algorithms, the data show that 
for the type of optimization problem described in this 
paper, the benefits to be gained from a fine-toothed 
examination of specific regions of the decision space 
do not outweigh the costs of failing to examine a larger 
geographical area within that decision space, albeit 
with a coarser degree of granularity.  

The findings reported in this paper are critically 
important to the optimization literature because very 
few organizations – and even fewer developers of 
popular metaheuristic search algorithms – ever take 
the time to actually compare the performance of a 
chosen or proposed metaheuristic algorithm against 
the performance of a random baseline. Instead, the 
implicit assumption has been that metaheuristic search 
algorithms outperform random search algorithms in 
optimization tasks. The results presented in this paper 
strongly challenge the veracity of this assumption of 
universal metaheuristic superiority, and speak loudly 
to the fact that sophisticated metaheuristic search 
algorithms may not perform as well as a simple 
random search in certain types of optimization tasks. 

The limitations of the current study are, of course, 
quite clear, but nevertheless deserve specific 
acknowledgement. First, the performance of the 
various algorithms was assessed using only one 
optimization problem. It remains to be seen whether 
random search algorithms would perform similarly 
when challenged with other optimization problems. 
Second, only two random and two metaheuristic 
search algorithms were included in the analysis. The 
extent to which the results reported here would hold if 
different random or metaheuristic search algorithms 
had been used is unknown. Each of these limitations 
represents an opportunity to expand the base of 
knowledge by means of future research, and any 
conclusions about the comparative performance of 
random vs. metaheuristic search algorithms under 
different conditions must be considered within the 
boundaries of these two limitations. 

Finally, it has not been the intention of this paper 
to disparage metaheuristic search algorithms or those 
who create or use them. On the contrary, metaheuristic 
search algorithms have proven themselves over a span 
of several decades to be valuable tools in the data 
scientist’s toolkit, particularly when used properly in 
situations involving otherwise intractable optimization 
problems. It has instead been the intention of this paper 
to draw both managerial and academic attention to the 

fact that metaheuristic search algorithms do not always 
outperform random search algorithms in optimization 
tasks. To assume otherwise is folly. At a minimum, we 
believe that every researcher who proposes a new 
metaheuristic search algorithm should compare and 
report upon the performance of the proposed algorithm 
against that of a random baseline. After all, the results 
reported herein show that under certain conditions, the 
performance of popular and well-established 
metaheuristic search algorithms can be surpassed by a 
simple random search, and that as an inevitable result, 
there are certainly situations in which randomness can 
actually be good for organizational decision-making. 
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