
1

On the Need for Random Baseline Comparisons in Metaheuristic Search

Daniel S. Soper
Information Systems and Decision Sciences Department

California State University, Fullerton
dsoper@fullerton.edu

Abstract

A wide variety of organizations now regularly rely

on established metaheuristic search algorithms in
order to find solutions to otherwise intractable
optimization problems. Unfortunately, neither the
developers of these algorithms nor the organizations
that rely on them typically assess the algorithms’
performance against a baseline random search
strategy, opting instead to compare a specific
algorithm’s performance against that of other
metaheuristic search algorithms. This paper reveals
the folly of such behavior, and shows by means of an
optimization case study that simple random or nearly
random search algorithms can, in certain
circumstances, substantially outperform several of the
most widely used metaheuristic search algorithms in
finding solutions to optimization problems. The
implications of the observed results for both
organizations and researchers are presented and
discussed.

1. Introduction

For the past several decades many organizations,
acting in a wide variety of industries, have relied on
heuristic search algorithms in order to find near-
optimal solutions to problems that would otherwise be
infeasible using current technologies [1]. The
infeasibility of such problems emerges from
computational or temporal limitations that prevent an
organization from examining every possible solution
in a large decision space. Consider, for example, the
case of companies such as United Parcel Service
(UPS), DHL Express, and FedEx, each of which must
deliver hundreds of thousands or even millions of
packages every day. Ideally, each of these companies
would like to minimize the total costs associated with
delivering its packages with a view toward
maximizing corporate profits. Unfortunately,
identifying optimal routes for their legions of delivery
drivers that simultaneously consider factors such as

fuel costs, total time, distance travelled, traffic flows,
weather conditions, and promised delivery windows
makes this an extremely complicated, NP-hard
optimization problem [2]. The intractability of this
problem on a large scale is, in fact, so well-known that
it has been given its own name – the Vehicle Routing
Problem – and has been studied in the optimization
literature for nearly 60 years [3].

When an organization is faced with an unavoidable
NP-hard optimization problem (such as the Vehicle
Routing Problem), it has no choice but to acknowledge
the intractable nature of the situation, and turn its
attention to algorithms that seek to provide near-
optimal solutions to the problem within a timeframe
that is acceptable in light of the organization’s
objectives and constraints. Among the wide variety of
algorithms that have been designed to address NP-hard
optimization problems, many of the most effective and
widely used fall under the umbrella of what are known
as metaheuristic search algorithms; i.e., algorithms
that use a rule-based, iterative process to explore a
decision space with the goal of efficiently finding a
near-optimal solution to the underlying problem [4].
Some of the most popular and long-lived heuristic
search algorithms include Tabu search [5] and
Backtracking [6], with more recent entrants including
Ant Colony Optimization [7] and Cuckoo Search [8],
among many others.

Implicit in organizational adoption and use of
metaheuristic search algorithms such as those noted
above is the assumption that the algorithms will yield
solutions that offer the organization at least some
degree of improvement over what could be expected
from entirely random or nearly random search
methods. For example, imagine a decision space that
contains one million possible solutions, each of which
requires one second of computational time to evaluate.
If an organization’s constraints are such that it can wait
for only 1,000 seconds, then it will be computationally
possible for the organization to explore only 1% of the
overall decision space before it must settle on a
solution and proceed with its other tasks. In a scenario
such as this, the organization might reasonably adopt
a metaheuristic search algorithm in order to find the

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50045
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 1288

2

best solution possible given its time constraints. By
doing so, however, the organization is implicitly
assuming that its chosen metaheuristic search
algorithm will, on average, identify better solutions
than could otherwise be obtained by means of a
random or nearly random search strategy.

The key problem with this assumption is that it is
almost never actually tested in practice. Clearly, the
performance of a random search strategy provides a
natural and fundamental baseline against which any
metaheuristic search algorithm can be evaluated, but if
the optimization literature serves as any sort of guide,
then it must be concluded that the performance of
proposed metaheuristic search algorithms is almost
never compared against that of a random baseline. As
evidence of this phenomenon, consider that none of
the authors of the foundational papers or books in
which any of the most popular metaheuristic search
algorithms1 were first described took the time to
compare the performance of their newly proposed
algorithms to a random search strategy [5, 9-18].
Instead, the common practice among researchers who
are proposing a new metaheuristic search algorithm is
simply to compare the performance of their proposed
algorithm against that of other metaheuristic search
algorithms.

Incorporating elements of randomness into
metaheuristic search algorithms has been
acknowledged by several authors to impart desirable
characteristics upon those algorithms. For example, it
has been noted that adding a random restart feature to
certain metaheuristic search algorithms can help those
algorithms to escape from local optima, thereby
improving the algorithms’ chances of finding a better
solution [18]. It has also been shown that using a
multi-start approach that incorporates random
elements can improve overall metaheuristic search
performance for certain combinatorial optimization
problems [19]. Although such approaches reveal some
of the advantages that randomness can impart,
incorporating random elements into a metaheuristic
search algorithm is nevertheless fundamentally
different from considering the performance of a fully
random or nearly random approach. The general
indifference and lack of attention in the metaheuristic
optimization literature toward the comparative
performance of random search strategies serves as the
primary motivation for this paper, and raises the
following general research question:

Can simple random search strategies outperform
well-established metaheuristic search strategies?

1 See [18] for a list of the most popular metaheuristic search
algorithms.

More particularly, this paper inquires into the

following specific research question:

Under what conditions can random search
algorithms outperform well-established metaheuristic
search algorithms in a process optimization task?

The balance of this paper seeks to provide some

much-needed insights into these questions. In the next
section, a multidimensional process optimization
problem is described that will serve as the basis of our
investigation into the comparative performance of
several random and metaheuristic search strategies.
Section 3 briefly describes each of the random and
metaheuristic search algorithms used in the study, as
well as the means by which the performance of the
various algorithms were evaluated and compared.
Section 4 describes the results of the analysis, and
discusses the implications of those results for both
managers and researchers. The paper concludes with
Section 5, which provides a brief summary, a
discussion of the paper’s limitations, and a few final
remarks.

2. A process optimization problem

It is now well-established that an organization’s

long-term prospects for success are intimately linked
to the organization’s ability to monitor, adjust, and
optimize its business processes on an ongoing basis
[20]. Organizations are typically characterized by a
wide variety of interacting processes, each of which
can be configured in a number of different ways. Since
each process may interact with many other processes,
identifying the best way to configure each of these
interacting processes such that together they
maximally contribute to some higher-level goal (e.g.,
profit maximization, efficiency, etc.) is a fundamental
component of effective business process management
[21].

In this paper, we consider a scenario in which an
organization is attempting to optimize three
interacting processes, each of which can be configured
in 100 different ways. Different combinations of these
process configuration possibilities either improve or
erode the efficiency of the overall process system.
Since each of the three processes in this scenario can
be configured in 100 different ways, there are a total
of 1003 = 1 million distinct ways in which the three-
process system can be configured. To model this
situation, we adopt a geometric framework in which

Page 1289

3

each process and its 100 possible means of
configuration is represented as a parameter in a three-
dimensional Euclidean space. In this way, any of the 1
million possible system configurations can be
conceptualized as a distinct location within the three-
dimensional space. For example, if the three processes
are labeled X, Y, and Z, then the spatial coordinates
(25, 50, 75) would indicate that process X is using
configuration option 25 (out of 100 possible
configuration options), process Y is using
configuration option 50, and process Z is using
configuration option 75.

To perturb the three-dimensional space, we adopt
a model based on Newtonian gravity in which each of
the 1 million spatial locations is occupied by an object
having a particular mass. By default, each object was
initially assigned a unity mass of 1 kilogram. Twenty
objects were then chosen at random, each of which
was assigned a random integer mass between 2 and
100 kilograms, inclusive2. The resulting space thus
possessed a quantifiable level of gravitational
acceleration at each spatial location, and contained
both a single global maximum and a variety of local
optima. For purposes of this study, the level of
gravitational acceleration at any location within the
three-dimensional space was taken to represent the
degree of overall system efficiency that the
organization would enjoy if it adopted the three

process configuration options represented by the
spatial coordinates for the location in question.

The nearly 8 trillion calculations that were
necessary in order to compute the total level of
gravitational acceleration at each of the 1 million
points within the three-dimensional space was
laboriously performed using the DIRECT algorithm
created by the N-Body Shop at the University of
Washington [22]. For the purpose of these calculations
Newton’s universal gravitational constant was set
equal to 1.0. After completing the calculations, the
mean gravitational acceleration (i.e., the average level
of efficiency) for the decision space was determined to
be 186.401 (stdev = 44.627), with a minimum value of
3.469 (representing the least efficient combination of
process configurations) and a maximum value of
277.149 (representing the most efficient combination
of process configurations). The spatial coordinates for
the optimal combination of process configurations
were observed to be (X = 74, Y = 91, Z = 65). Figure 1
below provides two different depictions of the
decision space, with the leftmost image showing a
random sample of 100,000 (i.e., 10%) of the possible
process configurations, and the rightmost image
showing the areas of strongest gravitational
acceleration (i.e., high efficiency) within the decision
space.

Figure 1. Two views of the process optimization decision space. Left: random sample of 100,000 possible
process configurations; Right: areas of high process configuration efficiency.

2 The spatial locations and masses of these 20 randomly chosen
objects were: (0, 76, 43): 22 kg, (6, 60, 21): 58 kg, (8, 90, 30): 51
kg, (14, 18, 93): 12 kg, (23, 29, 17): 43 kg, (27, 61, 22): 78 kg, (46,
76, 99): 64 kg, (52, 18, 46): 67 kg, (67, 67, 37): 81 kg, (70, 39, 90):

29 kg, (71, 28, 51): 56 kg, (72, 51, 25): 32 kg, (74, 90, 65): 80 kg,
(75, 44, 28): 12 kg, (76, 12, 82): 48 kg, (79, 4, 29): 42 kg, (80, 16,
89): 68 kg, (81, 83, 39): 85 kg, (90, 90, 78): 73 kg, and (99, 87,
74): 66 kg.

Page 1290

4

Having described the geometric framework
underlying the three-process optimization problem,
we next turn our attention to the random and
metaheuristic search algorithms that were used to
explore the decision space, as well as the means by
which the performance of the algorithms was
evaluated and compared. It will serve the reader well
to keep this geometric framework in mind, as it will be
referred to regularly in the following section.

3. Search algorithms and analytical
methods

We begin this section by describing the two
random search algorithms and the two metaheuristic
search algorithms that were used to search the process
optimization decision space described in the previous
section. The goal of each of these algorithms was to
find the combination of process configurations that
would yield the highest level of overall system
efficiency after having examined a specified number
of possibilities. After describing the four search
algorithms, we will then proceed to a detailed
description of the analytical methods that were used to
evaluate and compare the performance of those
algorithms.

3.1. Random search algorithms

Two random or nearly random search algorithms
were used in the analysis: random search (RND) and
self-avoiding random search (SA-RND).

3.1.1. Random search (RND). The random search
algorithm is by far the simplest possible search
algorithm to implement, describe, and understand.
Recalling that the decision space is characterized by
three processes (X, Y, and Z), each of which can be
configured in 100 different ways, the random search
algorithm works by using a uniform random number
generator to select a random integer between 0 and 99
(inclusive) for each of the three processes. Together,
these three randomly chosen values represent a unique
location in the decision space; e.g., (X = 36, Y = 24, Z
= 18). The algorithm then evaluates the overall
efficiency of the system at that location, and saves the
resulting solution only if it is the best solution that has
been thus far observed, overwriting the prior best
solution. This process is then repeated until a specified
number of possible solutions have been examined,
after which the best overall solution identified during
the search process is returned.

3.1.2. Self-avoiding random search (SA-RND).
After the fully random search algorithm, the self-
avoiding random search algorithm is next in rank with
respect to its simplicity. The self-avoiding random
search algorithm is, in fact, identical to the random
search algorithm described in the previous subsection,
with one important addition – that of a memory.
Whereas in a (fully) random search it is perfectly
possible for the algorithm to examine the same
location in the decision space multiple times, in a self-
avoiding random search, the algorithm keeps a record
of all of the locations that it has previously examined.
If by random chance the algorithm happens to select a
previously visited location for its next inquiry, then a
new set of location coordinates is randomly generated
until a location is identified that has not already been
examined. In this way, the algorithm avoids visiting
any given location more than once.

3.2. Metaheuristic search algorithms

We next turn our attention to the two metaheuristic
search algorithms that were used in the analysis: Tabu
search (TS-100 & TS-1000) [5] and Backtracking
search (BT) [6]. These two algorithms were chosen for
inclusion in the analysis because they are two of the
best-known, well-established, and well-studied
metaheuristic search algorithms known to exist (each
having existed for several decades), and because they
are among the most widely used metaheuristic search
algorithms by modern organizations seeking to solve
complex optimization problems. Before proceeding to
the algorithm descriptions, however, it is first
necessary to define three concepts that are central to
both of the algorithms: neighbors, moves, and
neighborhoods.

Recalling the geometric framework described in
the previous section, a neighbor is defined as a
location (i.e., a possible solution) that is geometrically
adjacent to the current location. A move, then, is an
action in which the focus of attention shifts from the
current location to one of the current location’s
neighbors. The set of neighbors for the current location
is referred to as its neighborhood. Figure 2 below
depicts these concepts in two dimensions.

In the example illustrated in Figure 2, imagine that
the focus of a search algorithm is currently on node 13.
From this location, the algorithm can move to one of
node 13’s neighbors (i.e., nodes 7, 8, 9, 12, 14, 17, 18,
or 19), which together constitute its neighborhood. As
can be readily seen in this illustration, the composition
of the current neighborhood changes with every move.
The principles of Euclidean geometry allow the
concepts of neighbors, moves, and neighborhoods to
be readily extended into higher-dimensional spaces,

Page 1291

5

such as with the current study wherein the
metaheuristic search algorithms are operating within a
three-dimensional decision space.

Figure 2. A two-dimensional illustration of moves,
neighbors, and neighborhoods in metaheuristic

search algorithms.

3.2.1. Tabu search (TS-100 & TS-1000). The Tabu
search algorithm begins by examining a specified or
randomly chosen location within the decision space, as
well as all of the potential solutions in the initial
location’s neighborhood. The best-performing
solution thus far observed is then recorded, after which
the algorithm moves to the neighbor that offers the
best available solution. All of the previously
unexamined neighbors in the new location’s
neighborhood are then examined, the overall best
solution thus far observed is updated if necessary, and
the algorithm again moves to the best-performing
location in the neighborhood. This process continues
until a specified number of locations have been
examined, or until some other stopping criterion has
been met. Critically, as the algorithm moves from one
location to the next it constantly constructs and
updates its Tabu list – a memory structure that keeps
track of recently visited locations within the decision
space. Returning to any location on the Tabu list is
disallowed (hence the term Tabu), and this prevents
the algorithm from becoming stuck at a local optimum.
The Tabu list is typically of a predefined size (e.g.,
1,000 locations), and behaves as a queue, such that
when the list is full, the oldest item on the list is
dropped in order to make room for the newest item. In
its simplest form, the Tabu search algorithm maintains
only a short-term Tabu list (such as that described
above), but rule-based intermediate-term and long-
term memory structures are also possible in more
sophisticated versions of the algorithm, the goals of
which are typically to diversify the search, or intensify
the search in specific areas of the decision space.

The use of a Tabu list introduces several
interesting properties into the behavior of the search
algorithm. First, the definition of what constitutes the
neighborhood for a specific location depends on the
composition of the Tabu list. Referring back to Figure
2, after examining node 13 and its neighbors, the
algorithm might decide that its next move will be to
node 14. Before moving, node 13 and all of its
neighbors (except node 14) would be added to the
Tabu list. Upon arriving at node 14, the neighborhood
would consist only of nodes 10, 15, and 20, since all
of node 14’s other neighbors are currently marked as
Tabu. Second, because the Tabu list is typically of a
finite size, it is possible for the algorithm to revisit
previously examined locations within the decision
space once those locations have expired from the Tabu
list. This can encourage the algorithm to explore new
paths through the decision space beginning at
locations that were initially ignored due to better
options being available in the neighborhood at the time
of the previous visit.

For the current study, two variants of the Tabu
search algorithm were included in the investigation,
one of which used a Tabu list whose maximum size
was constrained to 100 locations, and the other of
which used a Tabu list with a maximum size of 1,000
locations. These variants are later referred to as TS-
100 and TS-1000, respectively. Since little guidance
exists in the literature regarding the ideal size of a
Tabu list, these two variants of the algorithm were
included in the current study for purposes of
methodological rigor.

3.2.2. Backtracking search (BT). The Backtracking
search algorithm is one of the oldest, most well-
established, and widely used metaheuristic search
algorithms [6]. As with Tabu search, the Backtracking
search algorithm begins by examining a specified or
randomly chosen location within the decision space, as
well as all of the potential solutions in the initial
location’s neighborhood. The best-performing
solution thus far observed is recorded, after which the
Backtracking algorithm moves to the neighbor whose
solution offers the most improvement over that of the
current location. All of the previously unexamined
neighbors of the new location are then evaluated, after
which the best solution thus far observed is updated if
necessary, and the algorithm again moves to the
neighbor whose solution offers the most improvement
over that of the current location.

If at any time while the algorithm is searching the
decision space two or more neighbors happen to offer
the same degree of maximal improvement over the
current location, then one of the neighbors is chosen at
random to be the destination of the next move. If none

Page 1292

6

of the locations in the neighborhood offers any
improvement over the current location, then the
algorithm steps backwards to the previous location on
the path (hence the term Backtracking), and then
moves to the location that offers the second-best
degree of improvement over the current location’s
level of performance. If all available paths originating
from a specific location have been exhausted, then the
algorithm steps backwards once again to the previous
location on the path, and continues searching. If all
possible paths have been exhausted and the algorithm
has stepped backwards all the way to its initial point
of origin, then a new origin location within the
decision space is chosen at random, and the search
process begins again from that point. As with Tabu
search, the Backtracking search algorithm continues
until it has examined a specified number of possible
solutions, or until some other stopping criterion has
been reached.

3.3. Analytical methods

Having described the two random and two
metaheuristic search algorithms that were used in the
analysis, we now proceed to describe the means by
which the performance of those algorithms was
evaluated and compared. The general strategy for
analyzing the performance of the various algorithms
was to allow each algorithm to repeatedly explore the
decision space described in Section 2, with a view
toward identifying the most efficient combination of
configurations for processes X, Y, and Z. During each
trial, the algorithms were allowed to explore a specific
number of locations within the decision space, with the
number of locations explored being assigned from a
set of 13 equidistantly spaced values on a logarithmic
scale ranging from 0.01% to 10% of the total number
of locations in the decision space3. Recalling that the
decision space contained a total of 1 million unique
locations, the algorithms were thus constrained to
examining as few as 100 locations per trial, to as many
as 100,000 locations per trial. Using the number of
locations explored as a stopping criterion provided an
equitable basis of comparison by which the
performance of the algorithms could be observed as
they were allowed to explore greater and greater
proportions of the overall decision space.

Each algorithm was subjected to 500 separate trials
for each of the 13 stopping criteria options described
above. For each combination of trial and stopping
criterion, each algorithm was assigned the same,

3 13 equidistantly spaced values were considered in order to
provide more detailed insights into the comparative performance of
the search algorithms than could otherwise have been obtained if

randomly chosen starting location within the decision
space. This approach was taken in order to ensure
equitability among the four search algorithms by
preventing any particular algorithm from having an
advantage in a particular trial due simply to its having
been assigned a propitious random starting location.
With 500 trials per stopping criterion, 13 different
stopping criteria, and five different algorithms or
algorithm variants, a total of 32,500 distinct trials were
conducted in the study.

The overall performance of each algorithm for
each stopping criterion option was measured as the
mean of the best solution found by the algorithm
during each of the 500 trials. Comparisons between the
levels of performance of any pair of algorithms within
a particular stopping criterion option was assessed by
means of a series of two-tailed, paired t-tests [23]. The
relative performance of the set of random search
algorithms vs. that of the set of metaheuristic search
algorithms was also assessed by computing the overall
average level of performance of the random and
metaheuristic algorithms within each of the stopping
criterion options, and then using a Welch t-test to
evaluate the extent to which the two levels of
performance were statistically different from one
another [24]. The results of all of these analyses are
presented and discussed in the following section.

4. Results and discussion

We begin the presentation of our results with Table
1 below, which shows the average level of
performance for each algorithm within each stopping
criterion, as well as the average level of performance
for the set of random algorithms and the set of
metaheuristic algorithms. When considering these
values, it may be useful to recall from Section 2 that
the level of performance among the complete set of 1
million locations in the decision space ranged from
3.469 to 277.149, with the average level of
performance being 186.401 (stdev = 44.627).

Many interesting insights can be gained by
carefully examining the values reported in Table 1.
First, the overall average performance of the self-
avoiding random search algorithm (SA-RND) was
slightly higher than that of the (fully) random search
algorithm (RND). This accords well with what one
should intuitively expect, since by avoiding any
locations that it has previously visited, the self-
avoiding random search should, on average, visit more
unique locations during each trial than its fully random

only the “natural” points of consideration on the logarithmic scale
(i.e., 0.01%, 0.10% 1.00%, and 10.00%) had been evaluated.

Page 1293

7

counterpart (which may, by random chance, visit the
same location more than once). Second, among the
metaheuristic search algorithms, the Backtracking
search algorithm (BT) generally outperformed both
variants of the Tabu search algorithm (TS-100 & TS-
1000), thereby suggesting that the Backtracking
approach may be more suitable for this type of
optimization problem than Tabu search. Third,
recalling that the two variants of the Tabu search
algorithm varied only according to the size of their
Tabu lists, the variant with the shorter Tabu list (TS-

100) outperformed the variant with the longer Tabu
list (TS-1000) when constrained to searching
approximately 0.18% to 0.32% of the overall decision
space. When the algorithm was allowed to search
1.00% of the overall decision space or more, however,
the variant with the longer Tabu list (TS-1000)
outperformed the variant with the shorter Tabu list
(TS-100). Insights such as these may prove useful to
researchers who are attempting to formulate
recommendations about the appropriate size of a Tabu
list.

Table 1. Comparative performance of random and metaheuristic search algorithms.

Number of Locations
Explored

(% of Decision Space)

Random Algorithms Metaheuristic Algorithms
Mean Performance

by Algorithm Category

RND (R1) SA-RND (R2) TS-100 (M1) TS-1000 (M2) BT (M3) Random Metaheuristic

100 (0.010%) 251.71 M1, M2, M3 251.77 M1, M2, M3 241.72 241.72 241.67 251.74*** 241.71

178 (0.018%) 253.44 253.64 254.28 R1, R2 254.28 R1, R2 254.28 R1, R2 253.54 254.28***

316 (0.032%) 254.73 254.65 256.51 R1, R2 256.51 R1, R2 256.51 R1, R2 254.69 256.51***

562 (0.056%) 255.57 255.46 256.58 R1, R2 256.58 R1, R2 256.58 R1, R2 255.52 256.58***

1,000 (0.100%) 255.96 256.05 256.52 R1, R2 256.52 R1, R2 256.59 R1, R2 256.00 256.54***

1,778 (0.178%) 256.21 256.36 256.47 R1 256.46 R1 256.58 R1 256.28 256.50***

3,162 (0.316%) 256.49 256.63 256.57 256.54 256.73 256.56 256.61

5,623 (0.562%) 256.77 M1, M2 256.84 M1, M2 256.49 256.49 256.88 256.80* 256.62

10,000 (1.000%) 257.15 M1 257.44 M1, M2 256.51 257.00 257.68 R1 257.29 257.06

17,783 (1.778%) 258.07 M1 258.14 M1 256.51 257.93 258.94 R1, R2 258.10 257.79

31,623 (3.162%) 258.98 M1, M2 258.81 M1, M2 256.46 258.02 259.29 258.90*** 257.92

56,234 (5.623%) 260.59 M1, M2 260.62 M1, M2 256.50 258.15 260.66 260.61*** 258.44

100,000 (10.000%) 262.89 M1, M2 263.92 M1, M2, M3 256.45 257.90 262.50 263.41*** 258.95

Overall Mean: 256.81 256.95 255.20 255.70 256.53 256.88 255.81

M1, M2, M3 indicates that a random algorithm outperformed a metaheuristic algorithm at the p < 0.05 level or better (M1 = TS-100, M2 = TS-1000, M3 = BT).
R1, R2 indicates that a metaheuristic algorithm outperformed a random algorithm at the p < 0.05 level or better (R1 = RND, R2 = SA-RND).
* indicates that one algorithm category statistically outperformed the other algorithm category (* p < 0.05, ** p < 0.01, *** p < 0.001)

We will next direct our attention toward answering
this paper’s primary research question; to wit:

Under what conditions can random search algorithms
outperform metaheuristic search algorithms in a
process optimization task?

The values reported in Table 1 show that there
were many situations in which the random search
algorithms outperformed the metaheuristic search
algorithms, and vice versa. This observation alone
casts a shadow of doubt over the assumption of
metaheuristic superiority. Further, examining the
mean performance of the various algorithms by
category reveals that when the area to be searched was
less than approximately 0.018% of the total size of the
decision space, the random search algorithms

statistically outperformed the metaheuristic search
algorithms when trying to find a near-optimal solution
to the process optimization task. The random search
algorithms again showed themselves to be superior
when the area to be searched was larger than
approximately 0.316% of the total size of the decision
space. Put differently, the data show that the
metaheuristic search algorithms outperformed their
random counterparts only within a very narrow range.
In all other situations, the random search algorithms
were, on average, observed to consistently outperform
the metaheuristic search algorithms. These results are
depicted graphically in Figure 3 below.

The implications of Figure 3 for organizational
decision-making should not be ignored, particularly if
similar patterns are observed to exist among other
optimization problems. Put simply, the figure shows

Page 1294

8

that an organization struggling with this particular
optimization problem would do well to rely on
metaheuristic search algorithms if – and only if – its
constraints were such that it could afford to explore
only 0.018% to 0.316% of the decision space before
settling on a solution. In all other cases, the figure
suggests that the organization would be better off by
relying on random search algorithms. The extent to
which this pattern of results would hold in the context
of other optimization problems is unknown, but until

further evidence is collected and analyzed,
organizations would be well-advised to evaluate the
performance of any metaheuristic search algorithm
upon which they may rely against that of a random
baseline. Further, it should be the responsibility of any
researcher who is proposing a new metaheuristic
search algorithm to compare the performance of the
proposed algorithm against a similar random baseline.

Figure 3. Performance of random and metaheuristic search algorithms on a logarithmic scale.

5. Summary, limitations, and concluding
remarks

The current paper reported on a study aimed at
investigating whether and under what conditions
random search algorithms can outperform
metaheuristic search algorithms when attempting to
find a near-optimal solution to an optimization
problem. Using a process optimization task, the
performance of two random search algorithms was
compared against that of two popular metaheuristic
search algorithms under conditions in which the
various algorithms were allowed to search between
0.01% and 10.00% of the overall decision space. The
results of the study demonstrate conclusively that
under certain conditions, random search algorithms
can regularly and consistently outperform several of
the most well-known and widely used metaheuristic
search algorithms in finding a near-optimal solution to

an optimization problem. Specifically, the results
showed that the random search algorithms statistically
outperformed the metaheuristic algorithms in the
process optimization task when the percentage of the
decision space explored was either less than
approximately 0.018% of the total decision space or
greater than approximately 0.316% of the total
decision space. Put differently, the metaheuristic
search algorithms were only able to consistently
outperform the random search algorithms when they
were constrained to searching within a relatively
narrow range of percentages of the overall size of the
decision space.

One possible explanation for the observed results
is that due to their uniformly random nature, the
random algorithms are likely to do at least some
exploring in all regions of the decision space, despite
doing so with a coarser degree of granularity than their
metaheuristic counterparts. This supposition would
intuitively hold when the number of locations that the
algorithms are allowed to explore is both very small

Page 1295

9

and comparatively large. The metaheuristic
algorithms, by contrast, are designed to spend a great
deal of time carefully examining all of the possibilities
within smaller regions of the decision space. Although
it seems clear that under certain conditions this design
characteristic allows the metaheuristic algorithms to
outperform the random algorithms, the data show that
for the type of optimization problem described in this
paper, the benefits to be gained from a fine-toothed
examination of specific regions of the decision space
do not outweigh the costs of failing to examine a larger
geographical area within that decision space, albeit
with a coarser degree of granularity.

The findings reported in this paper are critically
important to the optimization literature because very
few organizations – and even fewer developers of
popular metaheuristic search algorithms – ever take
the time to actually compare the performance of a
chosen or proposed metaheuristic algorithm against
the performance of a random baseline. Instead, the
implicit assumption has been that metaheuristic search
algorithms outperform random search algorithms in
optimization tasks. The results presented in this paper
strongly challenge the veracity of this assumption of
universal metaheuristic superiority, and speak loudly
to the fact that sophisticated metaheuristic search
algorithms may not perform as well as a simple
random search in certain types of optimization tasks.

The limitations of the current study are, of course,
quite clear, but nevertheless deserve specific
acknowledgement. First, the performance of the
various algorithms was assessed using only one
optimization problem. It remains to be seen whether
random search algorithms would perform similarly
when challenged with other optimization problems.
Second, only two random and two metaheuristic
search algorithms were included in the analysis. The
extent to which the results reported here would hold if
different random or metaheuristic search algorithms
had been used is unknown. Each of these limitations
represents an opportunity to expand the base of
knowledge by means of future research, and any
conclusions about the comparative performance of
random vs. metaheuristic search algorithms under
different conditions must be considered within the
boundaries of these two limitations.

Finally, it has not been the intention of this paper
to disparage metaheuristic search algorithms or those
who create or use them. On the contrary, metaheuristic
search algorithms have proven themselves over a span
of several decades to be valuable tools in the data
scientist’s toolkit, particularly when used properly in
situations involving otherwise intractable optimization
problems. It has instead been the intention of this paper
to draw both managerial and academic attention to the

fact that metaheuristic search algorithms do not always
outperform random search algorithms in optimization
tasks. To assume otherwise is folly. At a minimum, we
believe that every researcher who proposes a new
metaheuristic search algorithm should compare and
report upon the performance of the proposed algorithm
against that of a random baseline. After all, the results
reported herein show that under certain conditions, the
performance of popular and well-established
metaheuristic search algorithms can be surpassed by a
simple random search, and that as an inevitable result,
there are certainly situations in which randomness can
actually be good for organizational decision-making.

6. References

[1] S. Luke, Essentials of Metaheuristics, 2nd ed.

Raleigh, NC: Lulu Press, 2013.
[2] B. L. Golden, S. Raghavan, and E. A. Wasil, The

Vehicle Routing Problem: Latest Advances and
New Challenges. New York, NY: Springer
Science & Business Media, 2008.

[3] G. B. Dantzig and J. H. Ramser, "The Truck
Dispatching Problem," Management Science, vol.
6, pp. 80-91, 1959.

[4] I. H. Osman and G. Laporte, "Metaheuristics: A
Bibliography," Annals of Operations Research,
vol. 63, pp. 511-623, 1996.

[5] F. Glover, "Future Paths for Integer Programming
and Links to Artificial Intelligence," Computers &
Operations Research, vol. 13, pp. 533-549, 1986.

[6] D. E. Knuth, The Art of Computer Programming.
Boston, MA: Addison-Wesley, 1968.

[7] A. C. M. D. V. Maniezzo, "Distributed
Optimization by Ant Colonies," in Toward a
Practice of Autonomous Systems: Proceedings of
the First European Conference on Artificial Life,
1992, p. 134.

[8] X.-S. Yang and S. Deb, "Cuckoo Search via Lévy
Flights," presented at the World Congress on
Nature & Biologically Inspired Computing, 2009.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
"Optimization by Simulated Annealing," Science,
vol. 220, pp. 671-680, 1983.

[10] J. H. Holland, Adaptation in Natural and Artificial
Systems. An Introductory Analysis with
Applications to Biology, Control and Artificial
Intelligence. Ann Arbor, MI: University of
Michigan Press, 1975.

[11] R. Storn and K. Price, "Differential Evolution–A
Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces," Journal of
Global Optimization, vol. 11, pp. 341-359, 1997.

[12] M. Dorigo and L. M. Gambardella, "Ant Colony
System: A Cooperative Learning Approach to the
Traveling Salesman Problem," IEEE Transactions
on Evolutionary Computation, vol. 1, pp. 53-66,
1997.

Page 1296

10

[13] S. Nakrani and C. Tovey, "On Honey Bees and
Dynamic Server Allocation in Internet Hosting
Centers," Adaptive Behavior, vol. 12, pp. 223-240,
2004.

[14] R. Eberhart and J. Kennedy, "A New Optimizer
Using Particle Swarm Theory," in Micro Machine
and Human Science, 1995, pp. 39-43.

[15] Z. W. Geem, J. H. Kim, and G. Loganathan, "A
New Heuristic Optimization Algorithm: Harmony
Search," Simulation, vol. 76, pp. 60-68, 2001.

[16] X.-S. Yang, "Firefly Algorithms for Multimodal
Optimization," in International Symposium on
Stochastic Algorithms, 2009, pp. 169-178.

[17] X.-S. Yang and S. Deb, "Engineering
Optimisation by Cuckoo Search," International
Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, pp. 330-343,
2010.

[18] X.-S. Yang, "Metaheuristic Optimization,"
Scholarpedia, vol. 6, p. 11472, 2011.

[19] T. A. Feo and M. G. Resende, "Greedy
randomized adaptive search procedures," Journal
of global optimization, vol. 6, pp. 109-133, 1995.

[20] P. Trkman, "The Critical Success Factors of
Business Process Management," International
Journal of Information Management, vol. 30, pp.
125-134, 2010.

[21] J. Jeston and J. Nelis, Business Process
Management. New York, NY: Routledge, 2014.

[22] N-Body Shop, DIRECT: An O(N^2) Direct Sum
Gravity Tool. Seattle, WA: University of
Washington, 2017.

[23] G. Keller, Statistics for Management and
Economics, 10th ed. Stamford, CT: Cengage
Learning, 2014.

[24] B. L. Welch, "The Generalization of Student's
Problem when Several Different Population
Variances are Involved," Biometrika, vol. 34, pp.
28-35, 1947.

Page 1297

